STMETRICS: A PYTHON']PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION

被引:1
|
作者
Soares, Anderson R. [1 ]
Bendini, Hugo N. [1 ]
Vaz, Daiane V. [1 ]
Uehara, Tatiana D. T. [1 ]
Neves, Alana K. [1 ]
Lechler, Sarah [2 ]
Korting, Thales S. [1 ]
Fonseca, Leila M. G. [1 ]
机构
[1] Brazils Natl Inst Space Res INPE, Gen Coordinat Earth Observat OBT, Av dos Astronautas 1758, Sao Jose Dos Campos, SP, Brazil
[2] Univ Munster, Inst Geoinformat, Munster, Germany
基金
巴西圣保罗研究基金会;
关键词
time-series; !text type='python']python[!/text; multi-temporal features; remote sensing; AREA;
D O I
10.1109/IGARSS39084.2020.9323346
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Producing reliable land use and land cover maps to support the deployment and operation of public policies is a necessity, especially when environmental management and economic development are considered. To increase the accuracy of these maps, satellite image time-series have been used, as they allow the understanding of land cover dynamics through the time. This paper presents the stmetrics, a python package that provides the extraction of state-of-the-art time-series features. These features can be used for remote sensing time-series image classification and analysis. stmetrics aims to be an easy-to-use package. The package is available under the GNU GPL software license, and the full source code is available for download at: github.com/andersonreisoares/stmetrics.
引用
收藏
页码:2061 / 2064
页数:4
相关论文
共 50 条
  • [1] Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh - A Python']Python package)
    Christ, Maximilian
    Braun, Nils
    Neuffer, Julius
    Kempa-Liehr, Andreas W.
    [J]. NEUROCOMPUTING, 2018, 307 : 72 - 77
  • [2] pyts: A Python']Python Package for Time Series Classification
    Faouzi, Johann
    Janati, Hicham
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [3] Wotan: Comprehensive Time-series Detrending in Python']Python
    Hippke, Michael
    David, Trevor J.
    Mulders, Gijs D.
    Heller, Rene
    [J]. ASTRONOMICAL JOURNAL, 2019, 158 (04):
  • [4] Seglearn: A Python']Python Package for Learning Sequences and Time Series
    Burns, David M.
    Whyne, Cari M.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19
  • [5] MaD GUI: An Open-Source Python']Python Package for Annotation and Analysis of Time-Series Data
    Ollenschlaeger, Malte
    Kuderle, Arne
    Mehringer, Wolfgang
    Seifer, Ann-Kristin
    Winkler, Juergen
    Gassner, Heiko
    Kluge, Felix
    Eskofier, Bjoern M.
    [J]. SENSORS, 2022, 22 (15)
  • [6] Pyts: A python package for time series classification
    Faouzi, Johann
    Janati, Hicham
    [J]. Journal of Machine Learning Research, 2020, 21
  • [7] dtwParallel: A Python']Python package to efficiently compute dynamic time warping between time series
    Escudero-Arnanz, Oscar
    Marques, Antonio G.
    Soguero-Ruiz, Cristina
    Mora-Jimenez, Inmaculada
    Robles, Gregorio
    [J]. SOFTWAREX, 2023, 22
  • [8] MarineTools.temporal: A Python']Python package to simulate Earth and environmental time series
    Cobos, M.
    Otinar, P.
    Magana, P.
    Lira-Loarca, A.
    Baquerizo, A.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 150
  • [9] Hydrostats: A Python']Python Package for Characterizing Errors between Observed and Predicted Time Series
    Roberts, Wade
    Williams, Gustavious P.
    Jackson, Elise
    Nelson, E. James
    Ames, Daniel P.
    [J]. HYDROLOGY, 2018, 5 (04):
  • [10] Panel Segmentation: A Python']Python Package for Automated Solar Array Metadata Extraction Using Satellite Imagery
    Perry, Kirsten
    Campos, Christopher
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2023, 13 (02): : 208 - 212