MarineTools.temporal: A Python']Python package to simulate Earth and environmental time series

被引:6
|
作者
Cobos, M. [1 ,2 ]
Otinar, P. [2 ]
Magana, P. [1 ,2 ]
Lira-Loarca, A. [3 ]
Baquerizo, A. [1 ,2 ]
机构
[1] Univ Granada, Dept Struct Mech & Hydraul Engn, Edificio Politecn,Campus Fuentenueva, Granada 18071, Spain
[2] Andalusian Inst Earth Syst Res, Avda Mediterraneo S-N, Granada, Spain
[3] Univ Genoa, Dept Civil Chem & Environm Engn, Via Montallegro 1, I-16145 Genoa, Italy
关键词
Time expansion of parameters; Non-stationary probability models; Stochastic characterization; Environmental modelling; MODELING PROCESS; UNCERTAINTY; EVOLUTION; DESIGN;
D O I
10.1016/j.envsoft.2022.105359
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The assessment of the uncertainty about the evolution of complex processes usually requires different re-alizations consisting of multivariate temporal signals of environmental data. However, it is common to have only one observational set. MarineTools.temporal is an open-source Python package for the non-stationary parametric statistical analysis of vector random processes suitable for environmental and Earth modelling. It takes a single timeseries of observations and allows the simulation of many time series with the same probabilistic behavior. The software generalizes the use of piecewise and compound distributions with any number of arbitrary continuous distributions. The code contains, among others, multi-model negative log-likely functions, wrapped-normal distributions, and generalized Fourier timeseries expansion. Its programming philosophy significantly improves the computing time and makes it compatible with future extensions of scipy.stats. We apply it to the analysis of freshwater river discharge, water currents, and the simulation of ensemble projections of sea waves, to show its capabilities.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] pyts: A Python']Python Package for Time Series Classification
    Faouzi, Johann
    Janati, Hicham
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [2] Seglearn: A Python']Python Package for Learning Sequences and Time Series
    Burns, David M.
    Whyne, Cari M.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19
  • [3] Pyts: A python package for time series classification
    Faouzi, Johann
    Janati, Hicham
    [J]. Journal of Machine Learning Research, 2020, 21
  • [4] dtwParallel: A Python']Python package to efficiently compute dynamic time warping between time series
    Escudero-Arnanz, Oscar
    Marques, Antonio G.
    Soguero-Ruiz, Cristina
    Mora-Jimenez, Inmaculada
    Robles, Gregorio
    [J]. SOFTWAREX, 2023, 22
  • [5] STMETRICS: A PYTHON']PYTHON PACKAGE FOR SATELLITE IMAGE TIME-SERIES FEATURE EXTRACTION
    Soares, Anderson R.
    Bendini, Hugo N.
    Vaz, Daiane V.
    Uehara, Tatiana D. T.
    Neves, Alana K.
    Lechler, Sarah
    Korting, Thales S.
    Fonseca, Leila M. G.
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2061 - 2064
  • [6] Hydrostats: A Python']Python Package for Characterizing Errors between Observed and Predicted Time Series
    Roberts, Wade
    Williams, Gustavious P.
    Jackson, Elise
    Nelson, E. James
    Ames, Daniel P.
    [J]. HYDROLOGY, 2018, 5 (04):
  • [7] Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh - A Python']Python package)
    Christ, Maximilian
    Braun, Nils
    Neuffer, Julius
    Kempa-Liehr, Andreas W.
    [J]. NEUROCOMPUTING, 2018, 307 : 72 - 77
  • [8] MVTS-Data Toolkit: A Python']Python package for preprocessing multivariate time series data
    Ahmadzadeh, Azim
    Sinha, Kankana
    Aydin, Berkay
    Angryk, Rafal A.
    [J]. SOFTWAREX, 2020, 12
  • [9] kMCpy: A python']python package to simulate transport properties in solids with kinetic Monte Carlo
    Deng, Zeyu
    Mishra, Tara P.
    Xie, Weihang
    Saeed, Daanyal Ahmed
    Gautam, Gopalakrishnan Sai
    Canepa, Pieremanuele
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2023, 229
  • [10] PyMTRD: A Python']Python package for calculating the metrics of temporal rainfall distribution
    Guo, Zhengxu
    Wang, Yang
    Liu, Caiqin
    Yang, Wanhong
    Liu, Junzhi
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 182