Local symmetries in propositional logic

被引:0
|
作者
Arai, NH
Urquhart, A
机构
[1] Hiroshima City Univ, Fac Informat Sci, Dept Comp Sci, Hiroshima 73131, Japan
[2] Univ Toronto, Dept Philosophy & Comp Sci, Toronto, ON M5S 1A1, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The symmetry rule in propositional logic allows the exploitation of symmetries present in a problem. In the context of resolution, the rule enables the shortening of refutations by using symmetries present in an initial set of clauses. These symmetries can be local or global. The present paper proves that the local symmetry rule is strictly more powerful than the global symmetry rule. It also exhibits sets of clauses that show exponential lower bounds for the local symmetry rule, where the symmetry group consists of all variable permutations. These examples remain exponentially hard even when the symmetry group is enlarged to include complementation. Examples are exhibited in which resolution with the global symmetry rule has an exponential speed-up with respect to the cutting plane refutation system.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [31] TRACTABILITY THROUGH SYMMETRIES IN PROPOSITIONAL CALCULUS
    BENHAMOU, B
    SAIS, L
    JOURNAL OF AUTOMATED REASONING, 1994, 12 (01) : 89 - 102
  • [32] IS ACT THEORY A PROPOSITIONAL LOGIC WITHOUT LOGIC?
    Jespersen, Bjorn
    JOURNAL OF PHILOSOPHY, 2023, 120 (09): : 484 - 510
  • [33] Propositional dynamic logic as a logic of belief revision
    van Eijck, Jan
    Wang, Yanjing
    LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2008, 5110 : 136 - 148
  • [34] ON RECONSTRUCTABILITY OF CLASSICAL PROPOSITIONAL LOGIC IN INTUITIONISTIC LOGIC
    WOJCICKI, R
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1970, 18 (08): : 421 - &
  • [35] Relating first-order monadic omega-logic, propositional linear-time temporal logic, propositional generalized definitional reflection logic and propositional infinitary logic
    Kamide, Norihiro
    JOURNAL OF LOGIC AND COMPUTATION, 2017, 27 (07) : 2271 - 2301
  • [36] A SURVEY OF PROPOSITIONAL REALIZABILITY LOGIC
    Plisko, Valery
    BULLETIN OF SYMBOLIC LOGIC, 2009, 15 (01) : 1 - 42
  • [37] Reasoning processes in propositional logic
    Strannegård C.
    Ulfsbäcker S.
    Hedqvist D.
    Gärling T.
    Journal of Logic, Language and Information, 2010, 19 (3) : 283 - 314
  • [38] Propositional quantification for conditional logic
    Besnard, P
    Guinnebault, JM
    Mayer, E
    QUALITATIVE AND QUANTITATIVE PRACTICAL REASONING, 1997, 1244 : 183 - 197
  • [39] ON MODELS FOR PROPOSITIONAL DYNAMIC LOGIC
    KNIJNENBURG, PMW
    VANLEEUWEN, J
    THEORETICAL COMPUTER SCIENCE, 1991, 91 (02) : 181 - 203
  • [40] PROPOSITIONAL DYNAMIC LOGIC OF FLOWCHARTS
    HAREL, D
    SHERMAN, R
    INFORMATION AND CONTROL, 1985, 64 (1-3): : 119 - 135