Electroconductivity and pressure-temperature states of step shocked C60 fullerite

被引:2
|
作者
Molodets, A. M. [1 ]
Avdonin, V. V.
Zhukov, A. N.
Kim, V. V.
Osip'yan, A. Yu.
Sidorov, N. S.
Shulga, J. M.
Fortov, V. E.
机构
[1] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Russia
[2] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Russia
关键词
high pressure; equation of state; conductivity; fullerenes; hugoniot;
D O I
10.1080/08957950701211072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A study of electrophysical and thermodynamic properties of C-60 single crystals under step shock loading has been carried out. The increase and the following reduction in specific electroconductivity of C-60 fullerite single crystals at step shock compression up to pressure 30 GPa have been measured. The equations of state for face centred cubic (fcc) C-60 fullerite as well as for two-dimensional polymer C-60 and for three-dimensional polymer C-60 (3D-C-60) were constructed. The pressure-temperature states of C-60 fullerite were calculated at step shock compression up to pressure 30 GPa and temperature 550 K. The X-ray diffraction studies of shock-recovered samples reveal a mixture of fcc C-60 and a X-ray amorphous component of fullerite C-60. The start of the formation of the X-ray amorphous component occurs at a pressure P-m approximate to 19.8 GPa and a temperature T-m approximate to 520 K. At pressures exceeding P-m and temperatures exceeding T-m, the shock compressed fullerite consist of a two-phase mixture of fcc C-60 fullerite and an X-ray amorphous component presumably consisting of the nucleators of polymer 3D-C-60 fullerite. The decrease in electroconductivity of fullerite can be explained by the percolation effect caused by the change of pressure, size and number of polymeric phase nuclei.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 50 条
  • [31] C60 COPPER FULLERITE: SYNTHESIS AND PROPERTIES
    Gerasimov, Victor
    Zarafutdinov, Ruslan
    Proskurina, Olga
    MATERIALS PHYSICS AND MECHANICS, 2018, 39 (01): : 56 - 60
  • [32] On the effective Debye temperatures of the C60 fullerite
    V. P. Mikhal’chenko
    Physics of the Solid State, 2010, 52 : 1549 - 1558
  • [33] Dislocation mobility in C60 fullerite crystals
    Fomenko, L. S.
    Lubenets, S. V.
    Osip'yan, Yu. A.
    Orlov, V. I.
    Izotov, A. N.
    Sidorov, N. S.
    PHYSICS OF THE SOLID STATE, 2007, 49 (04) : 800 - 804
  • [34] Magnetite Nanoparticles in Fullerite C60 Powder
    E. A. Petrakovskaya
    V. G. Isakova
    A. D. Balaev
    O. A. Bayukov
    A. F. Bovina
    Inorganic Materials, 2004, 40 : 589 - 594
  • [35] C60 fullerite with a "stretched" fcc lattice
    Shul'ga, YM
    Tarasov, BP
    JETP LETTERS, 1998, 68 (03) : 253 - 256
  • [36] Oxidation of C60 fullerite by interstitial oxygen
    Shulga, Y. M.
    Martynenko, V. M.
    Open'ko, V. V.
    Kulikov, A. V.
    Michtchenko, A.
    Johnson, E.
    Mochena, M. D.
    Gutsev, G. L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (32): : 12096 - 12103
  • [37] Dislocation mobility in C60 fullerite crystals
    L. S. Fomenko
    S. V. Lubenets
    Yu. A. Osip’yan
    V. I. Orlov
    A. N. Izotov
    N. S. Sidorov
    Physics of the Solid State, 2007, 49 : 800 - 804
  • [38] Analysis of thermodynamic properties of fullerite C60
    Aksenova, NA
    Isakina, AP
    Prokhvatilov, AI
    Strzhemechny, MA
    LOW TEMPERATURE PHYSICS, 1999, 25 (8-9) : 724 - 731
  • [39] Hydrogenation of Fullerite C60 in Gaseous Phase
    Schur, D. V.
    Zaginaichenko, S. Yu.
    Savenko, A. F.
    Bogolepov, V. A.
    Anikina, N. S.
    Zolotarenko, A. D.
    Matysina, Z. A.
    Veziroglu, T. Nejat
    Skryabina, N. E.
    CARBON NANOMATERIALS IN CLEAN ENERGY HYDROGEN SYSTEMS - II, 2011, : 87 - +