The role of low-volatility organic compounds in initial particle growth in the atmosphere

被引:538
|
作者
Troestl, Jasmin [1 ]
Chuang, Wayne K. [2 ]
Gordon, Hamish [3 ]
Heinritzi, Martin [4 ]
Yan, Chao [5 ]
Molteni, Ugo [1 ]
Ahlm, Lars [6 ]
Frege, Carla [1 ]
Bianchi, Federico [1 ,5 ,7 ]
Wagner, Robert [5 ]
Simon, Mario [4 ]
Lehtipalo, Katrianne [1 ,5 ]
Williamson, Christina [4 ,8 ,24 ,25 ]
Craven, Jill S. [9 ]
Duplissy, Jonathan [5 ,10 ]
Adamov, Alexey [5 ]
Almeida, Joao [3 ]
Bernhammer, Anne-Kathrin [11 ,12 ]
Breitenlechner, Martin [11 ,12 ]
Brilke, Sophia [4 ]
Dias, Antonio [3 ]
Ehrhart, Sebastian [3 ]
Flagan, Richard C. [9 ]
Franchin, Alessandro [1 ,3 ,5 ]
Fuchs, Claudia [1 ]
Guida, Roberto [3 ]
Gysel, Martin [1 ]
Hansel, Armin [11 ,12 ]
Hoyle, Christopher R. [1 ,13 ]
Jokinen, Tuija [5 ]
Junninen, Heikki [5 ]
Kangasluoma, Juha [5 ]
Keskinen, Helmi [5 ,14 ,24 ,26 ]
Kim, Jaeseok [14 ,24 ,27 ]
Krapf, Manuel [1 ]
Kuerten, Andreas [4 ]
Laaksonen, Ari [14 ,15 ]
Lawler, Michael [14 ,16 ]
Leiminger, Markus [4 ]
Mathot, Serge [3 ]
Moehler, Ottmar [17 ]
Nieminen, Tuomo [5 ,10 ]
Onnela, Antti [3 ]
Petaejae, Tuukka [5 ]
Piel, Felix M. [4 ]
Miettinen, Pasi [14 ]
Rissanen, Matti P. [5 ]
Rondo, Linda [4 ]
Sarnela, Nina [5 ]
Schobesberger, Siegfried [5 ,24 ,28 ]
机构
[1] Paul Scherrer Inst, Lab Atmospher Chem, CH-5232 Villigen, Switzerland
[2] Carnegie Mellon Univ, Ctr Atmospher Particle Studies, Pittsburgh, PA 15213 USA
[3] CERN, CH-1211 Geneva, Switzerland
[4] Goethe Univ Frankfurt, Inst Atmospher & Environm Sci, D-60438 Frankfurt, Germany
[5] Univ Helsinki, Dept Phys, POB 64, FI-00014 Helsinki, Finland
[6] Univ Stockholm, Dept Appl Environm Sci, SE-10961 Stockholm, Sweden
[7] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland
[8] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA
[9] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[10] Univ Helsinki, Helsinki Inst Phys, POB 64, FI-00014 Helsinki, Finland
[11] Univ Innsbruck, Inst Ion & Appl Phys, A-6020 Innsbruck, Austria
[12] Ionicon Analyt GmbH, A-6020 Innsbruck, Austria
[13] SLF, WSL Inst Snow & Avalanche Res, CH-7260 Davos, Switzerland
[14] Univ Eastern Finland, Kuopio 70211, Finland
[15] Finnish Meteorol Inst, Helsinki 00101, Finland
[16] Natl Ctr Atmospher Res, Atmospher Chem Observat & Modeling Lab, Boulder, CO 80301 USA
[17] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, D-76021 Karlsruhe, Germany
[18] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[19] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[20] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[21] Univ Lisbon, SIM, P-1849016 Lisbon, Portugal
[22] Univ Beira Interior, P-1849016 Lisbon, Portugal
[23] Aerodyne Res Inc, Billerica, MA 01821 USA
[24] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[25] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA
[26] Univ Helsinki, SMEAR II, Hyytiala Forestry Field Stn, Hyytialantie 124, FI-35500 Korkeakoski, Finland
[27] Korea Polar Res Inst, Arct Res Ctr, Inchon 21990, South Korea
[28] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
[29] Univ Appl Sci Northwestern Switzerland, Inst Aerosol & Sensor Technol, CH-5210 Windisch, Switzerland
基金
芬兰科学院; 俄罗斯基础研究基金会; 瑞典研究理事会; 瑞士国家科学基金会; 美国国家科学基金会; 奥地利科学基金会; 欧洲研究理事会;
关键词
DIFFERENTIAL MOBILITY ANALYZER; OXIDIZED RO2 RADICALS; SULFURIC-ACID; AEROSOL FORMATION; ALPHA-PINENE; OXIDATION-PRODUCTS; MASS-SPECTROMETER; SIZE; NUCLEATION; OZONOLYSIS;
D O I
10.1038/nature18271
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday(1). Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres(2,3). In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles(4), thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth(5,6), leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer(7-10). Although recent studies(11-13) predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon(2), and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Kohler theory)(2,14), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown(15) that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.
引用
收藏
页码:527 / +
页数:20
相关论文
共 50 条
  • [31] Detection of low-volatility gas-phase organic compounds from the OH-initiated oxidation of isoprene hydroxyhydroperoxide and their relevance to organic aerosol production
    Krechmer, Jordan
    Coggan, Matthew
    Nowak, John
    Kimmel, Joel
    Stark, Harald
    Massoli, Paola
    Jayne, John
    Crounse, John
    Tran Nguyen
    Wennberg, Paul
    Seinfeld, John
    Worsnop, Douglas
    Jimenez, Jose
    Canagaratna, Manjula
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [32] Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere
    Li, Zeqi
    Zhao, Bin
    Yin, Dejia
    Wang, Shuxiao
    Qiao, Xiaohui
    Jiang, Jingkun
    Li, Yiran
    Shen, Jiewen
    He, Yicong
    Chang, Xing
    Li, Xiaoxiao
    Liu, Yuliang
    Li, Yuanyuan
    Liu, Chong
    Qi, Ximeng
    Chen, Liangduo
    Chi, Xuguang
    Jiang, Yueqi
    Li, Yuyang
    Wu, Jin
    Nie, Wei
    Ding, Aijun
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 58 (02) : 1223 - 1235
  • [33] Desorption of low-volatility compounds induced by dynamic friction between microdroplets and an ultrasonically vibrating blade
    Usmanov, D. T.
    Hiraoka, K.
    Wada, H.
    Morita, S.
    Nonami, H.
    ANALYST, 2016, 141 (04) : 1398 - 1404
  • [34] DETERMINATION OF THE LIQUID-VAPOR PRESSURE OF LOW-VOLATILITY COMPOUNDS FROM THE KOVATS RETENTION INDEX
    SPIEKSMA, W
    LUIJK, R
    GOVERS, HAJ
    JOURNAL OF CHROMATOGRAPHY A, 1994, 672 (1-2) : 141 - 148
  • [35] CRYOSTAT AND EVAPORATOR FOR SPECTRAL STUDIES OF VAPORS OF LOW-VOLATILITY COMPOUNDS USING METHOD OF ISOLATION IN A MATRIX
    NOVIKOV, VN
    PEROV, PA
    MALTSEV, AA
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES-USSR, 1970, (05): : 1497 - &
  • [36] Gas-particle partitioning of organic compounds in the atmosphere
    Lazaridis, M
    JOURNAL OF AEROSOL SCIENCE, 1999, 30 (09) : 1165 - 1170
  • [37] Low-Volatility Vapors and New Particle Formation Over the Southern Ocean During the Antarctic Circumnavigation Expedition
    Baccarini, Andrea
    Dommen, Josef
    Lehtipalo, Katrianne
    Henning, Silvia
    Modini, Robin L.
    Gysel-Beer, Martin
    Baltensperger, Urs
    Schmale, Julia
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2021, 126 (22)
  • [38] Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques - Part A
    Ortega, John
    Helmig, Detlev
    CHEMOSPHERE, 2008, 72 (03) : 343 - 364
  • [39] Rapid desorption of low-volatility compounds in liquid droplets accompanied by the flash evaporation of solvent below the Leidenfrost temperature
    Ninomiya, Satoshi
    Rankin-Turner, Stephanie
    Hiraoka, Kenzo
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2020, 34 (01)
  • [40] Determination of vapor pressure of low-volatility compounds using a method to obtain saturated vapor with coated capillary columns
    Rittfeldt, L
    ANALYTICAL CHEMISTRY, 2001, 73 (11) : 2405 - 2411