Efficient application of carbon-based nanomaterials for high-performance perovskite solar cells

被引:8
|
作者
Niu, Ying-Chun [1 ]
Yang, Li-Feng [2 ,3 ]
Aldamasy, M. H. [4 ,5 ]
Li, Meng [4 ]
Lan, Wen-Jie [1 ]
Xu, Quan [1 ]
Liu, Yuan [6 ]
Feng, Shang-Lei [2 ,3 ]
Yang, Ying-Guo [2 ,3 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil SSRF, Shanghai 201204, Peoples R China
[3] Chinese Acad Sci, Univ Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[4] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany
[5] Egyptian Petr Res Inst, Cairo 11727, Egypt
[6] Beijing Informat Sci & Technol Univ, Key Lab, Minist Educ Optoelect Measurement Technol & Instr, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon-based nanomaterials; Perovskite solar cells; Stability; Efficiency; HOLE-TRANSPORTING MATERIAL; REDUCED GRAPHENE OXIDE; CROSS-LINKABLE FULLERENE; ELECTRON-TRANSPORT; SNO2; NANOPARTICLES; QUANTUM DOTS; LAYER; DERIVATIVES; EXTRACTION; STABILITY;
D O I
10.1007/s12598-020-01680-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The power conversion efficiency of perovskite solar cells (PSCs) has rapidly risen from 3.8% to over 25.0% in just about one decade, which attracts a lot of attention from the scientific and engineering communities. However, some challenges remain, hindering the progress of commercialization such as intrinsic and extrinsic (environmental) stabilities, which can be improved by an interface and structural engineering. In recent years, some reports indicate that the interfacial engineering using carbon-based nanomaterials additives plays a crucial role in the process of charge carriers and perovskite crystal growth and thereby enhances device performance and operational stability. Here, we review the development of the varieties of carbon-based nanomaterials applications in PSCs, such as hole-transporting layers (HTLs), electron-transporting layers (ETLs), perovskite bulk layer, and their interfaces. Furthermore, we proposed a further suggestion about the optimized preparation conditions for the preparation of PSCs, which may inspire the researcher to discover, design, and manufacture the more efficient perovskite solar cells in academic and industry.
引用
收藏
页码:2747 / 2762
页数:16
相关论文
共 50 条
  • [31] Carbon-Based Materials Used for Perovskite Solar Cells
    Wu, Zhongwei
    Song, Tao
    Sun, Baoquan
    CHEMNANOMAT, 2017, 3 (02): : 75 - 88
  • [32] Efficient carrier generation and transport of CsPb1-xMnx(Br/Cl)3 quantum dots in high-performance carbon-based perovskite solar cells
    Chenguang Liu
    Mengwei Chen
    Houpu Zhou
    Haifei Lu
    Yingping Yang
    Applied Physics A, 2022, 128
  • [33] Efficient carrier generation and transport of CsPb1-xMnx(Br/Cl)3 quantum dots in high-performance carbon-based perovskite solar cells
    Liu, Chenguang
    Chen, Mengwei
    Zhou, Houpu
    Lu, Haifei
    Yang, Yingping
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (12):
  • [34] Prospects for the Use of Carbon-based Perovskite Solar Cells
    Kinev, Vladislav A.
    Gladyshev, Pavel P.
    Ibrahim, Medhat A.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2019, 62 : 89 - 97
  • [35] An efficient Co-NC composite additive for enhancing interface performance of carbon-based perovskite solar cells
    Geng, Cong
    Xie, Yahong
    Wei, Peng
    Liu, Haichao
    Qiang, Yue
    Zhang, Yi
    ELECTROCHIMICA ACTA, 2020, 358
  • [36] Additive engineering with sodium azide material for efficient carbon-based perovskite solar cells
    Kumar, Anjan
    Sayyed, M. I.
    Sabugaa, Michael M.
    Singh, Sangeeta
    Gavilan, Juan Carlos Orosco
    Sharma, Amit
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (16) : 7765 - 7773
  • [37] Anethole Regulated Crystallization for High Efficiency Carbon-Based Perovskite Solar Cells
    Hong, Jin
    Kang, Cuiting
    Huang, Rong
    Wu, Zhujie
    Li, Lingcong
    Li, Xijie
    Rao, Huashang
    Pan, Zhenxiao
    Zhong, Xinhua
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [38] Synergistic carbon-based hole transporting layers for efficient and stable perovskite solar cells
    Ruijia Zhang
    Yun Chen
    Jian Xiong
    Xiaowen Liu
    Journal of Materials Science, 2018, 53 : 4507 - 4514
  • [39] Dual-sites passivation for efficient and stable carbon-based perovskite solar cells
    Zhang, Jun
    Cheng, Nian
    Zhou, Haidong
    Zhong, Jun
    He, Fawang
    Chen, Yongji
    Chen, Changchun
    Liu, Zhenguo
    Zong, Peng-an
    MATERIALS TODAY ENERGY, 2024, 43
  • [40] Synergistic carbon-based hole transporting layers for efficient and stable perovskite solar cells
    Zhang, Ruijia
    Chen, Yun
    Xiong, Jian
    Liu, Xiaowen
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (06) : 4507 - 4514