An Iterative Maximum a Posteriori Estimation of Proficiency Level to Detect Multiple Local Likelihood Maxima

被引:6
|
作者
Magis, David [1 ]
Raiche, Gilles [2 ]
机构
[1] Katholieke Univ Leuven, Dept Psychol, B-3000 Louvain, Belgium
[2] Univ Quebec, Montreal, PQ H3C 3P8, Canada
关键词
maximum likelihood; Bayesian estimation; uniqueness; iterative MAP; logistic model; ABILITY;
D O I
10.1177/0146621609336540
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this article the authors focus on the issue of the nonuniqueness of the maximum likelihood (ML) estimator of proficiency level in item response theory (with special attention to logistic models). The usual maximum a posteriori (MAP) method offers a good alternative within that framework; however, this article highlights some drawbacks of its use. The authors then propose an iteratively based MAP estimator (IMAP), which can be useful in detecting multiple local likelihood maxima. The efficiency of the IMAP estimator is studied and is compared to the ML and MAP methods by means of a simulation study.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 50 条
  • [21] A comparison of maximum likelihood estimation and expected a posteriori estimation in CAT using the partial credit model
    Chen, SK
    Hou, LL
    Dodd, BG
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 1998, 58 (04) : 569 - 595
  • [22] Robot Navigation Algorithm Based on Sensor Technology and Iterative Maximum a Posteriori Estimation
    Zheng, Na
    Du, Yanli
    Bai, Qinghua
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2019, 23 (02) : 282 - 286
  • [23] Are there local maxima in the infinite-sample likelihood of Gaussian mixture estimation?
    Srebro, Nathan
    LEARNING THEORY, PROCEEDINGS, 2007, 4539 : 628 - 629
  • [24] Maximum Likelihood Signal Parameter Estimation via Track Before Detect
    Uney, Murat
    Mulgrew, Bernard
    Clark, Daniel
    2015 SENSOR SIGNAL PROCESSING FOR DEFENCE (SSPD), 2015, : 26 - 30
  • [25] Simulations of iterative procedures for maximum likelihood estimation in Ma(1) models
    Anderson, TW
    Mentz, RP
    Jarma, NM
    Martinez, CI
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1996, 25 (04) : 851 - 865
  • [26] Iterative Maximum Likelihood FIR Estimation of Dynamic Systems With Improved Robustness
    Zhao, Shunyi
    Shmaliy, Yuriy S.
    Ahn, Choon Ki
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (03) : 1467 - 1476
  • [27] Maximum likelihood gradient-based iterative estimation for multivariable systems
    Xia, Huafeng
    Yang, Yongqing
    Ding, Feng
    Xu, Ling
    Hayat, Tasawar
    IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (11): : 1683 - 1691
  • [28] Error Estimation of Iterative Maximum Likelihood Localization in Wireless Sensor Networks
    Zhao, Jizhong
    Mo, Lufeng
    Wu, Xiaoping
    Wang, Guoying
    Liu, Enbin
    Dai, Dan
    AD HOC & SENSOR WIRELESS NETWORKS, 2014, 23 (3-4) : 277 - 295
  • [29] BLIND DECONVOLUTION USING THE MAXIMUM-LIKELIHOOD-ESTIMATION AND THE ITERATIVE ALGORITHM
    NAKAJIMA, N
    OPTICS COMMUNICATIONS, 1993, 100 (1-4) : 59 - 66
  • [30] Iterative maximum likelihood estimation of the compound inverse Gaussian clutter parameters
    Belhi, K.
    Soltani, F.
    Mezache, A.
    ELECTRONICS LETTERS, 2020, 56 (13) : 677 - +