Generalized Sequential Differential Calculus for Expected-Integral Functionals

被引:5
|
作者
Mordukhovich, Boris S. [1 ]
Perez-Aros, Pedro [2 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Univ OHiggins, Inst Ciencias Ingn, Rancagua, Chile
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Variational analysis; Generalized differentiation; Stochastic programming; Expected-integral functionals; Sequential calculus;
D O I
10.1007/s11228-021-00590-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by applications to stochastic programming, we introduce and study the expected-integral functionals, which are mappings given in an integral form depending on two variables, the first a finite dimensional decision vector and the second one an integrable function. The main goal of this paper is to establish sequential versions of Leibniz's rule for regular subgradients by employing and developing appropriate tools of variational analysis.
引用
收藏
页码:621 / 644
页数:24
相关论文
共 50 条
  • [31] Vitali’s generalized absolute differential calculus
    Alberto Cogliati
    Archive for History of Exact Sciences, 2022, 76 : 15 - 43
  • [32] On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Ghanbari, Behzad
    Abdeljawad, Thabet
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [33] Extensions of generalized differential calculus in Asplund spaces
    Mordukhovich, BS
    Wang, BW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) : 164 - 186
  • [35] Nonlinear sequential Riemann–Liouville and Caputo fractional differential equations with generalized fractional integral conditions
    Chanon Promsakon
    Nawapol Phuangthong
    Sotiris K. Ntouyas
    Jessada Tariboon
    Advances in Difference Equations, 2018
  • [36] On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals
    Gauhar Rahman
    Kottakkaran Sooppy Nisar
    Behzad Ghanbari
    Thabet Abdeljawad
    Advances in Difference Equations, 2020
  • [37] The Algebraic Structure of Quantity Calculus II: Dimensional Analysis and Differential and Integral Calculus
    Raposo, Alvaro P.
    MEASUREMENT SCIENCE REVIEW, 2019, 19 (02): : 70 - 78
  • [38] GENERALIZED ANALYTIC FEYNMAN INTEGRAL VIA FUNCTION SPACE INTEGRAL OF BOUNDED CYLINDER FUNCTIONALS
    Chang, Seung Jun
    Choi, Jae Gil
    Chung, Hyun Soo
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (03) : 475 - 489
  • [39] Differential and integral calculus on discrete time series data
    Lin, Yi
    Systems Science, 2002, 27 (03): : 49 - 58
  • [40] Note on the basic theorem of integral calculus for differential manifolds
    Wen, Tao
    Hunan Shifan Daxue Ziran Kexue Xuebao/Natural Sciences Journal of Hunan Normal University, 1993, 16 (04):