Design of Fractional-Order Lag Network and Fractional-Order PI Controller for a Robotic Manipulator

被引:0
|
作者
Mandic, Petar D. [1 ]
Lino, Paolo [3 ]
Maione, Guido [3 ]
Lazarevic, Mihailo P. [1 ]
Sekara, Tomislav B. [2 ]
机构
[1] Univ Belgrade, Fac Mech Engn, Kraljice Marije 16, Belgrade, Serbia
[2] Univ Belgrade, Sch Elect Engn, Bulevar Kralja Aleksandra 73, Belgrade, Serbia
[3] Polytech Univ Bari, Dept Elect & Informat Engn, Via E Orabona 4, Bari, Italy
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Fractional-order lag compensator; fractional-order PI controller; robust control; frequency response; robotic manipulators; robot control;
D O I
10.1016/j.ifacol.2020.12.2050
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motion control of robotic manipulators is frequently realized by independent control of the DC motors actuating robot joints. Namely, nonlinearities, coupling between actuators and other complex dynamics are neglected if high gear ratios between the actuators and robot joints are considered. This paper proposes a fractional-order lag network or a fractional-order PI controller to control the position of the actuators shafts. The introduced fractional compensators are designed by using the symmetrical optimum principle and by parameters optimization or by frequency-domain loop shaping, respectively. Simulation results and frequency response show effectiveness and robustness of the approach. Copyright (C) 2020 The Authors.
引用
收藏
页码:3669 / 3674
页数:6
相关论文
共 50 条
  • [21] Online Fractional-Order PIα Controller Tuning Scheme
    Keziz, Bouziane
    Djouambi, Abdelbaki
    Ladaci, Samir
    [J]. 2018 6TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT), 2018,
  • [22] Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems
    Li, Ruihong
    Chen, Weisheng
    [J]. NONLINEAR DYNAMICS, 2014, 76 (01) : 785 - 795
  • [23] DESIGN OF UNKNOWN INPUT FRACTIONAL-ORDER OBSERVERS FOR FRACTIONAL-ORDER SYSTEMS
    N'Doye, Ibrahima
    Darouach, Mohamed
    Voos, Holger
    Zasadzinski, Michel
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2013, 23 (03) : 491 - 500
  • [24] Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems
    Ruihong Li
    Weisheng Chen
    [J]. Nonlinear Dynamics, 2014, 76 : 785 - 795
  • [25] Fractional Order Robust Controller for Fractional-Order Interval Plants
    Mihaly, Vlad
    Susca, Mircea
    Dulf, Eva H.
    Morar, Dora
    Dobra, Petru
    [J]. IFAC PAPERSONLINE, 2022, 55 (25): : 151 - 156
  • [26] Projective Lag Synchronization Controller Design for Uncertain Fractional-Order Chaotic Systems
    Lv, Hui
    Zhang, Xiulan
    Liu, Heng
    Xu, Song
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6190 - 6194
  • [27] Design of robust fractional-order lead-lag controller for uncertain systems
    Khiabani, Ataollah Gogani
    Babazadeh, Reza
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (18): : 2447 - 2455
  • [28] Fractional-order control of a flexible manipulator
    Feliu, Vicente
    Vinagre, Blas M.
    Monje, Concepcion A.
    [J]. ADVANCES IN FRACTIONAL CALCULUS: THEORETICAL DEVELOPMENTS AND APPLICATIONS IN PHYSICS AND ENGINEERING, 2007, : 449 - +
  • [29] FRACTIONAL-ORDER IMPEDANCE CONTROL DESIGN FOR ROBOT MANIPULATOR
    Liu, Xiaolian
    Wang, Shaohua
    Luo, Ying
    [J]. PROCEEDINGS OF ASME 2021 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2021, VOL 7, 2021,
  • [30] Control fractional-order continuous chaotic system via a simple fractional-order controller
    Zhang, Dong
    Yang, Shou-liang
    [J]. INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 770 - 773