A CHEBYSHEV-GAUSS SPECTRAL COLLOCATION METHOD FOR ODRINARY DIFFERENTIAL EQUATIONS

被引:4
|
作者
Yang, Xi [1 ]
Wang, Zhongqing
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2015年 / 33卷 / 01期
关键词
Initial value problems of ordinary differential equations; Chebyshev-Gauss spectral collocation method; Spectral accuracy; INITIAL-VALUE PROBLEMS; INTEGRATION PROCESSES; ELEMENT METHODS; TIME;
D O I
10.4208/jcm.1405-m4368
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an efficient Chebyshev-Gauss spectral collocation method for initial value problems of ordinary differential equations. We first propose a single interval method and analyze its convergence. We then develop a multi-interval method. The suggested algorithms enjoy spectral accuracy and can be implemented in stable and efficient manners. Some numerical comparisons with some popular methods are given to demonstrate the effectiveness of this approach.
引用
收藏
页码:59 / 85
页数:27
相关论文
共 50 条
  • [21] THE SPECTRAL COLLOCATION METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS
    Huang, Can
    Zhang, Zhimin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (03): : 667 - 679
  • [22] A novel Chebyshev-Gauss pseudospectral method for accurate milling stability prediction
    Ding Chen
    XiaoJian Zhang
    Han Ding
    The International Journal of Advanced Manufacturing Technology, 2021, 117 : 2867 - 2881
  • [23] Chebyshev spectral collocation method for system of nonlinear Volterra integral equations
    Zhendong Gu
    Numerical Algorithms, 2020, 83 : 243 - 263
  • [24] A Domain Decomposition Chebyshev Spectral Collocation Method for Volterra Integral Equations
    Wu, Hua
    Zhu, Yunzhen
    Wang, Hailu
    Xu, Lingfang
    JOURNAL OF MATHEMATICAL STUDY, 2018, 51 (01): : 57 - 75
  • [25] Chebyshev spectral collocation method for system of nonlinear Volterra integral equations
    Gu, Zhendong
    NUMERICAL ALGORITHMS, 2020, 83 (01) : 243 - 263
  • [26] SPECTRAL CHEBYSHEV COLLOCATION FOR THE POISSON AND BIHARMONIC EQUATIONS
    Bialecki, Bernard
    Karageorghis, Andreas
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05): : 2995 - 3019
  • [27] A Legendre-Gauss-Radau spectral collocation method for first order nonlinear delay differential equations
    Yi, Lijun
    Wang, Zhongqing
    CALCOLO, 2016, 53 (04) : 691 - 721
  • [28] Superconvergence of a Chebyshev spectral collocation method
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 34 (03) : 237 - 246
  • [29] Superconvergence of a Chebyshev Spectral Collocation Method
    Zhimin Zhang
    Journal of Scientific Computing, 2008, 34 : 237 - 246
  • [30] Modified Chebyshev collocation method for pantograph-type differential equations
    Yang, Changqing
    APPLIED NUMERICAL MATHEMATICS, 2018, 134 : 132 - 144