A NEW METHOD FOR ESTIMATION OF BARE SURFACE SOIL MOISTURE USING TIME-SERIES RADAR OBSERVATIONS

被引:1
|
作者
Liu, Chenzhou [1 ]
Shi, Jiancheng [1 ]
Zhao, Tianjie [1 ]
Gao, Shuai [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100864, Peoples R China
关键词
Radar noise; soil moisture; time-series; Bayesian; RETRIEVAL; SCHEME;
D O I
10.1109/IGARSS.2013.6723380
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a new algorithm for the retrieval of bare surface soil moisture using dual-polarization time-series radar data. The roughness index is used to describe the soil surface roughness condition. The new algorithm assumes the roughness condition is constant over a shot time, so that the roughness index retrieval accuracy can be improved by using temporal data to minimizing the effect of radar speckle noise. The uncertainty of the roughness index is predicted by using an error propagation theory. By applying the retrieved roughness index and corresponding uncertainty as a constraint, a Bayesian approach, which takes account the uncertainties of radar observation, is implemented. The algorithm is validated with a field ground dataset at 1.25 Ghz and 40 degrees incidence angle. The result shows an rms error (RMSE) of 0.06 cm(3)/cm(3) for soil moisture. The correlation coefficient between retrieved soil moisture and in situ data is 0.81. Surface rms height estimates are found with RMSE of 0.41 cm and correlation coefficient of 0.99. It is shown that the new algorithm using time-series data outperforms the Bayesian approach without using temporal information and snapshot method.
引用
下载
收藏
页码:2700 / 2703
页数:4
相关论文
共 50 条
  • [1] Soil Moisture Retrieval Using Time-Series Radar Observations Over Bare Surfaces
    Kim, Seung-Bum
    Tsang, Leung
    Johnson, Joel T.
    Huang, Shaowu
    van Zyl, Jakob J.
    Njoku, Eni G.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05): : 1853 - 1863
  • [2] An Extension of the Alpha Approximation Method for Soil Moisture Estimation Using Time-Series SAR Data Over Bare Soil Surfaces
    He, Lian
    Qin, Qiming
    Panciera, Rocco
    Tanase, Mihai
    Walker, Jeffrey P.
    Hong, Yang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (08) : 1328 - 1332
  • [3] A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data
    Kim, Yunjin
    van Zyl, Jakob J.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (08): : 2519 - 2527
  • [4] Multifrequency radar observations of bare surface soil moisture content: A laboratory experiment
    Mancini, M
    Hoeben, R
    Troch, PA
    WATER RESOURCES RESEARCH, 1999, 35 (06) : 1827 - 1838
  • [5] Time-Series Retrieval of Soil Moisture Using CYGNSS
    M-Khaldi, Mohammad M.
    Johnson, Joel T.
    O'Brien, Andrew J.
    Balenzano, Anna
    Mattia, Francesco
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4322 - 4331
  • [6] On improvement of bare surface soil moisture estimation
    Shi, JC
    Van Zyl, J
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 1834 - 1836
  • [7] Estimation of bare surface soil moisture using geostationary satellite data
    Zhang, Xiaoyu
    Tang, Bohui
    Jia, Yuan-yuan
    Li, Zhao-Liang
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1931 - 1934
  • [8] Time-series approach to estimate the soil moisture of a subsidence area by using dual polarimetric radar data
    Ma W.
    Chen D.
    Yang N.
    Ma C.
    Yaogan Xuebao/Journal of Remote Sensing, 2018, 22 (03): : 521 - 534
  • [9] Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces
    Oh, Y
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (03): : 596 - 601
  • [10] Modeling Soil Moisture Retrieval Errors in the Time-Series Ratio Method
    Horton, Dustin
    Bringer, Alexandra
    Johnson, Joel T.
    Park, Jeonghwan
    Al-Khaldi, Mohammad
    Bindlish, Rajat
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21