Comparison of power electronics lifetime between vertical- and horizontal-axis wind turbines

被引:15
|
作者
Parker, Max Alexander [1 ]
Soraghan, Conaill [2 ]
Giles, Alex [1 ]
机构
[1] Univ Strathclyde, Technol & Innovat Ctr, Dept Elect & Elect Engn, 99 George St, Glasgow G1 1RD, Lanark, Scotland
[2] Inovo, Offshore Renewable Energy Catapult, 121 George St, Glasgow G1 1RD, Lanark, Scotland
关键词
wind turbines; power convertors; failure analysis; wind power plants; offshore installations; reliability; cost reduction; power electronic lifetime; horizontal-axis wind turbines; vertical-axis wind turbines; power electronic converter; variable-speed wind turbine; turbine failure source; converter reliability; HAWTs; VAWTs; offshore turbines; energy cost reduction; thermal cycling; pulsating loss; IGBTs; diodes; converter losses; two-bladed turbine; cyclic torque variation; cyclic temperature variation; wind speed variation; rotor torque; rotor position; RELIABILITY; TEMPERATURE; PREDICTION; CONVERTER; SPEED;
D O I
10.1049/iet-rpg.2015.0352
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A comparison has been made of the power electronics lifetime for 5MW horizontal- and vertical-axis wind turbines, based on dynamic models supplied with generated wind speed time series. Both two- and three-bladed stall-regulated H-rotor vertical-axis turbines were modelled, with several different control parameters. Vertical-axis turbines are likely to lead to a shorter power electronics lifetime as the aerodynamic torque varies with rotor azimuth, leading to a cyclic generator torque, and increased thermal cycling in the power electronics. An electro-thermal model of a low-voltage converter was created, and used to calculate the switching device temperatures based on the generator torque and speed time series from the turbine model. An empirical lifetime model and rainflow-counting algorithm were used to calculate the lifetime, and this was repeated at different average wind speeds to determine the overall lifetime. The vertical-axis turbine was found to have a lower power electronics lifetime than the horizontal-axis, or require a larger number of parallel switching devices to achieve the same lifetime, although this was lessened by running the turbine with a more relaxed speed control, allowing the rotor inertia to partially absorb the aerodynamic torque ripple.
引用
收藏
页码:679 / 686
页数:8
相关论文
共 50 条
  • [21] Quantitative detection method for icing of horizontal-axis wind turbines
    Zhou, Zhihong
    Yi, Xian
    Jiang, Wentao
    Chen, Yu
    Tian, Xiaobao
    Li, Weibin
    Wang, Kaichun
    Ma, Honglin
    WIND ENERGY, 2019, 22 (03) : 433 - 446
  • [22] Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines
    Pope, K.
    Dincer, I.
    Naterer, G. F.
    RENEWABLE ENERGY, 2010, 35 (09) : 2102 - 2113
  • [23] Blockage corrections in wind tunnel tests of small horizontal-axis wind turbines
    Chen, T. Y.
    Liou, L. R.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2011, 35 (03) : 565 - 569
  • [24] Wind vane correction during yaw misalignment for horizontal-axis wind turbines
    Rott, Andreas
    Hoening, Leo
    Hulsman, Paul
    Lukassen, Laura J.
    Moldenhauer, Christof
    Kuehn, Martin
    WIND ENERGY SCIENCE, 2023, 8 (11) : 1755 - 1770
  • [25] Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions
    Dou, Bingzheng
    Guala, Michele
    Lei, Liping
    Zeng, Pan
    APPLIED ENERGY, 2019, 242 : 1383 - 1395
  • [26] SOME EFFECTS OF FINITE SOLIDITY ON THE AERODYNAMICS OF HORIZONTAL-AXIS WIND TURBINES
    WOOD, DH
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1987, 26 (02) : 255 - 273
  • [27] Some effects of flow expansion on the aerodynamics of horizontal-axis wind turbines
    Wood, David H.
    Limacher, Eric J.
    WIND ENERGY SCIENCE, 2021, 6 (06) : 1413 - 1425
  • [28] Yaw Behavior of Horizontal-Axis Small Wind Turbines in an Urban Area
    Nishizawa, Yoshifumi
    Tokuyama, Hideki
    Nakajo, Yuichi
    Ushiyama, Izumi
    WIND ENGINEERING, 2009, 33 (01) : 19 - 30
  • [29] The Yawing Behavior of Horizontal-Axis Wind Turbines: A Numerical and Experimental Analysis
    Castellani, Francesco
    Astolfi, Davide
    Natili, Francesco
    Mari, Francesco
    MACHINES, 2019, 7 (01)
  • [30] On the optimal tuning of individual pitch control for horizontal-axis wind turbines
    Riboldi, Carlo E. D.
    WIND ENGINEERING, 2016, 40 (04) : 398 - 416