Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation

被引:191
|
作者
Qiu, Ruihong [1 ]
Huang, Zi [1 ]
Yin, Hongzhi [1 ]
Wang, Zijian [1 ]
机构
[1] Univ Queensland, Brisbane, Qld, Australia
关键词
sequential recommendation; contrastive learning; NETWORKS;
D O I
10.1145/3488560.3498433
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advancements of sequential deep learning models such as Transformer and BERT have significantly facilitated the sequential recommendation. However, according to our study, the distribution of item embeddings generated by these models tends to degenerate into an anisotropic shape, which may result in high semantic similarities among embeddings. In this paper, both empirical and theoretical investigations of this representation degeneration problem are first provided, based on which a novel recommender model DuoRec is proposed to improve the item embeddings distribution. Specifically, in light of the uniformity property of contrastive learning, a contrastive regularization is designed for DuoRec to reshape the distribution of sequence representations. Given the convention that the recommendation task is performed by measuring the similarity between sequence representations and item embeddings in the same space via dot product, the regularization can be implicitly applied to the item embedding distribution. Existing contrastive learning methods mainly rely on data level augmentation for user-item interaction sequences through item cropping, masking, or reordering and can hardly provide semantically consistent augmentation samples. In DuoRec, a model-level augmentation is proposed based on Dropout to enable better semantic preserving. Furthermore, a novel sampling strategy is developed, where sequences having the same target item are chosen hard positive samples. Extensive experiments conducted on five datasets demonstrate the superior performance of the proposed DuoRec model compared with baseline methods. Visualization results of the learned representations validate that DuoRec can largely alleviate the representation degeneration problem.
引用
收藏
页码:813 / 823
页数:11
相关论文
共 50 条
  • [1] Contrastive Learning for Sequential Recommendation
    Xie, Xu
    Sun, Fei
    Liu, Zhaoyang
    Wu, Shiwen
    Gao, Jinyang
    Zhang, Jiandong
    Ding, Bolin
    Cui, Bin
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1259 - 1273
  • [2] Equivariant Contrastive Learning for Sequential Recommendation
    Zhou, Peilin
    Gao, Jingqi
    Xie, Yueqi
    Ye, Qichen
    Hua, Yining
    Kim, Jaeboum
    Wang, Shoujin
    Kim, Sunghun
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 129 - 140
  • [3] Intent Contrastive Learning for Sequential Recommendation
    Chen, Yongjun
    Liu, Zhiwei
    Li, Jia
    McAuley, Julian
    Xiong, Caiming
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2172 - 2182
  • [4] Contrastive learning with adversarial masking for sequential recommendation
    Xiang, Rongzheng
    Huang, Jiajin
    Yang, Jian
    ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, 2025, 71
  • [5] Temporal Graph Contrastive Learning for Sequential Recommendation
    Zhang, Shengzhe
    Chen, Liyi
    Wang, Chao
    Li, Shuangli
    Xiong, Hui
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 9359 - 9367
  • [6] Contrastive Learning with Bidirectional Transformers for Sequential Recommendation
    Du, Hanwen
    Shi, Hui
    Zhao, Pengpeng
    Wang, Deqing
    Sheng, Victor S.
    Liu, Yanchi
    Liu, Guanfeng
    Zhao, Lei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 396 - 405
  • [7] Simple Debiased Contrastive Learning for Sequential Recommendation
    Xie, Zuxiang
    Li, Junyi
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [8] Contrastive Learning with Frequency Domain for Sequential Recommendation
    Zhang, Yichi
    Yin, Guisheng
    Dong, Yuxin
    Zhang, Liguo
    APPLIED SOFT COMPUTING, 2023, 144
  • [9] Explanation Guided Contrastive Learning for Sequential Recommendation
    Wang, Lei
    Lim, Ee-Peng
    Liu, Zhiwei
    Zhao, Tianxiang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2017 - 2027
  • [10] Graph Contrastive Learning with Positional Representation for Recommendation
    Yi, Zixuan
    Ounis, Iadh
    Macdonald, Craig
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT II, 2023, 13981 : 288 - 303