Broken time-reversal symmetry scattering at the Anderson transition

被引:6
|
作者
Alcazar-Lopez, A. [1 ]
Mendez-Bermudez, J. A. [1 ]
Varga, Imre [2 ,3 ,4 ]
机构
[1] Univ Autonoma Puebla, Inst Fis, Puebla 72570, Mexico
[2] Budapesti Muszaki & Gazdasagtud Egyet, Fizikai Intezet, H-1521 Budapest, Hungary
[3] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[4] Univ Marburg, Wissensch Zentrum Mat Wissensch, D-35032 Marburg, Germany
关键词
Metal-insulator transition; Anderson model; electronic transport; random matrix theory; CONDUCTANCE DISTRIBUTION; MOBILITY EDGE; UNIVERSALITY;
D O I
10.1002/andp.200910375
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study numerically the statistical properties of some scattering quantities for the Power-law Banded Random Matrix model at criticality in the absence of time-reversal symmetry, with a small number of single-channel leads attached to it. We focus on the average scattering matrix elements, the conductance probability distribution, and the shot noise power as a function of the effective bandwidth b of the model. We find a smooth transition from insulating- to metallic-like behavior in the scattering properties of the model by increasing b. We contrast our results with existing random matrix theory predictions. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:896 / 900
页数:5
相关论文
共 50 条
  • [1] Thermopower with broken time-reversal symmetry
    Saito, Keiji
    Benenti, Giuliano
    Casati, Giulio
    Prosen, Tomaz
    [J]. PHYSICAL REVIEW B, 2011, 84 (20):
  • [2] Superconductivity with broken time-reversal symmetry
    Sigrist, M
    [J]. PHYSICA B-CONDENSED MATTER, 2000, 280 (1-4) : 154 - 158
  • [3] Nanostructures - Time-reversal symmetry broken
    Bains, S
    [J]. LASER FOCUS WORLD, 2004, 40 (02): : 24 - +
  • [4] BROKEN TIME-REVERSAL SYMMETRY OF ANISOTROPIC SUPERFLUIDITY
    KITA, T
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (10) : 3539 - 3556
  • [5] BROKEN TIME-REVERSAL SYMMETRY AND BERRY PHASE
    IHM, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1993, 7 (11): : 2109 - 2146
  • [6] MICROWAVE BILLIARDS WITH BROKEN TIME-REVERSAL SYMMETRY
    STOFFREGEN, U
    STEIN, J
    STOCKMANN, HJ
    KUS, M
    HAAKE, F
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (14) : 2666 - 2669
  • [7] Cryptoferromagnetism in superconductors with a broken time-reversal symmetry
    Sonin, E. B.
    Logoboy, N. A.
    [J]. 25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PT 5A: SUPERCONDUCTIVITY, 2009, 150 (5a):
  • [8] State with spontaneously broken time-reversal symmetry above the superconducting phase transition
    Vadim Grinenko
    Daniel Weston
    Federico Caglieris
    Christoph Wuttke
    Christian Hess
    Tino Gottschall
    Ilaria Maccari
    Denis Gorbunov
    Sergei Zherlitsyn
    Jochen Wosnitza
    Andreas Rydh
    Kunihiro Kihou
    Chul-Ho Lee
    Rajib Sarkar
    Shanu Dengre
    Julien Garaud
    Aliaksei Charnukha
    Ruben Hühne
    Kornelius Nielsch
    Bernd Büchner
    Hans-Henning Klauss
    Egor Babaev
    [J]. Nature Physics, 2021, 17 : 1254 - 1259
  • [9] State with spontaneously broken time-reversal symmetry above the superconducting phase transition
    Grinenko, Vadim
    Weston, Daniel
    Caglieris, Federico
    Wuttke, Christoph
    Hess, Christian
    Gottschall, Tino
    Maccari, Ilaria
    Gorbunov, Denis
    Zherlitsyn, Sergei
    Wosnitza, Jochen
    Rydh, Andreas
    Kihou, Kunihiro
    Lee, Chul-Ho
    Sarkar, Rajib
    Dengre, Shanu
    Garaud, Julien
    Charnukha, Aliaksei
    Huehne, Ruben
    Nielsch, Kornelius
    Buechner, Bernd
    Klauss, Hans-Henning
    Babaev, Egor
    [J]. NATURE PHYSICS, 2021, 17 (11) : 1254 - +
  • [10] Spontaneously broken time-reversal symmetry in quantum dots
    Steffens, O
    Suhrke, M
    Rossler, U
    [J]. EUROPHYSICS LETTERS, 1998, 44 (02): : 222 - 228