State with spontaneously broken time-reversal symmetry above the superconducting phase transition

被引:52
|
作者
Grinenko, Vadim [1 ,2 ,3 ]
Weston, Daniel [4 ]
Caglieris, Federico [2 ]
Wuttke, Christoph [2 ]
Hess, Christian [2 ,5 ]
Gottschall, Tino [6 ,7 ]
Maccari, Ilaria [4 ]
Gorbunov, Denis [6 ,7 ]
Zherlitsyn, Sergei [6 ,7 ]
Wosnitza, Jochen [1 ,6 ,7 ]
Rydh, Andreas [8 ]
Kihou, Kunihiro [9 ]
Lee, Chul-Ho [9 ]
Sarkar, Rajib [1 ]
Dengre, Shanu [1 ]
Garaud, Julien [10 ]
Charnukha, Aliaksei [2 ]
Huehne, Ruben [2 ]
Nielsch, Kornelius [2 ]
Buechner, Bernd [1 ,2 ]
Klauss, Hans-Henning [1 ]
Babaev, Egor [4 ]
机构
[1] Tech Univ Dresden, Inst Solid State & Mat Phys, Dresden, Germany
[2] Leibniz Inst Solid State & Mat Res, Dresden, Germany
[3] Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, Shanghai, Peoples R China
[4] KTH Royal Inst Technol, Dept Phys, Stockholm, Sweden
[5] Berg Univ Wuppertal, Fak Math & Nat Wissensch, Wuppertal, Germany
[6] Helmholtz Zentrum Dresden Rossendorf, Dresden High Magnet Field Lab HLD EMFL, Dresden, Germany
[7] Helmholtz Zentrum Dresden Rossendorf, Wurzburg Dresden Cluster Excellence Ctqmat, Dresden, Germany
[8] Stockholm Univ, Dept Phys, Stockholm, Sweden
[9] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan
[10] Univ Tours, Inst Denis Poisson UMR CNRS 7013, Tours, France
基金
欧洲研究理事会; 瑞典研究理事会; 美国国家科学基金会;
关键词
FLUCTUATIONS; WEAK;
D O I
10.1038/s41567-021-01350-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The most well-known example of an ordered quantum state-superconductivity-is caused by the formation and condensation of pairs of electrons. Fundamentally, what distinguishes a superconducting state from a normal state is a spontaneously broken symmetry corresponding to the long-range coherence of pairs of electrons, leading to zero resistivity and diamagnetism. Here we report a set of experimental observations in hole-doped Ba1-xKxFe2As2. Our specific-heat measurements indicate the formation of fermionic bound states when the temperature is lowered from the normal state. However, when the doping level is x approximate to 0.8, instead of the characteristic onset of diamagnetic screening and zero resistance expected below the superconducting phase transition, we observe the opposite effect: the generation of self-induced magnetic fields in the resistive state, measured by spontaneous Nernst effect and muon spin rotation experiments. This combined evidence indicates the existence of a bosonic metal state in which Cooper pairs of electrons lack coherence, but the system spontaneously breaks time-reversal symmetry. The observations are consistent with the theory of a state with fermionic quadrupling, in which long-range order exists not between Cooper pairs but only between pairs of pairs. A state that breaks time-reversal symmetry is observed in the normal phase above the superconducting critical temperature in a multiband superconductor. This could be explained by correlations between the Cooper pairs formed in different bands.
引用
收藏
页码:1254 / +
页数:22
相关论文
共 50 条
  • [1] State with spontaneously broken time-reversal symmetry above the superconducting phase transition
    Vadim Grinenko
    Daniel Weston
    Federico Caglieris
    Christoph Wuttke
    Christian Hess
    Tino Gottschall
    Ilaria Maccari
    Denis Gorbunov
    Sergei Zherlitsyn
    Jochen Wosnitza
    Andreas Rydh
    Kunihiro Kihou
    Chul-Ho Lee
    Rajib Sarkar
    Shanu Dengre
    Julien Garaud
    Aliaksei Charnukha
    Ruben Hühne
    Kornelius Nielsch
    Bernd Büchner
    Hans-Henning Klauss
    Egor Babaev
    [J]. Nature Physics, 2021, 17 : 1254 - 1259
  • [2] Spontaneously broken time-reversal symmetry in quantum dots
    Steffens, O
    Suhrke, M
    Rossler, U
    [J]. EUROPHYSICS LETTERS, 1998, 44 (02): : 222 - 228
  • [3] Broken time-reversal symmetry and superconducting states in the cuprates
    Kaur, RP
    Agterberg, DF
    [J]. PHYSICAL REVIEW B, 2003, 68 (10):
  • [4] BROKEN TIME-REVERSAL SYMMETRY AND BERRY PHASE
    IHM, J
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1993, 7 (11): : 2109 - 2146
  • [5] Correlated ground states with (spontaneously) broken time-reversal symmetry
    Farid, B
    [J]. SOLID STATE COMMUNICATIONS, 1997, 104 (04) : 227 - 231
  • [6] Broken time-reversal symmetry scattering at the Anderson transition
    Alcazar-Lopez, A.
    Mendez-Bermudez, J. A.
    Varga, Imre
    [J]. ANNALEN DER PHYSIK, 2009, 18 (12) : 896 - 900
  • [7] Broken Translational and Time-Reversal Symmetry in Unconventional Superconducting Films
    Vorontsov, A. B.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (17)
  • [8] Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state
    Grinenko, V
    Sarkar, R.
    Kihou, K.
    Lee, C. H.
    Morozov, I
    Aswartham, S.
    Buechner, B.
    Chekhonin, P.
    Skrotzki, W.
    Nenkov, K.
    Huehne, R.
    Nielsch, K.
    Drechsler, S-L
    Vadimovs, V. L.
    Silaev, M. A.
    Volkov, P. A.
    Eremin, I
    Luetkens, H.
    Klauss, H-H
    [J]. NATURE PHYSICS, 2020, 16 (07) : 789 - +
  • [9] Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state
    V. Grinenko
    R. Sarkar
    K. Kihou
    C. H. Lee
    I. Morozov
    S. Aswartham
    B. Büchner
    P. Chekhonin
    W. Skrotzki
    K. Nenkov
    R. Hühne
    K. Nielsch
    S. -L. Drechsler
    V. L. Vadimov
    M. A. Silaev
    P. A. Volkov
    I. Eremin
    H. Luetkens
    H.-H. Klauss
    [J]. Nature Physics, 2020, 16 : 789 - 794
  • [10] Broken time-reversal symmetry in the superconducting state of Sr2RuO4
    Mineev, V. P.
    [J]. PHYSICAL REVIEW B, 2007, 76 (21)