Improving the Detection of Noise Artifacts in Gravitational-Wave Data With a Classifier Graph

被引:0
|
作者
Zhang, Xi [1 ,2 ]
Ji, Yingsheng [3 ,4 ]
机构
[1] Minist Educ, Key Lab Trustworthy Distributed Comp & Serv, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing, Peoples R China
[3] Minist Educ, Ctr Earth Syst Sci, Key Lab Earth Syst Modeling, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
来源
IEEE ACCESS | 2017年 / 5卷
关键词
Classification; branching program; support vector machine; ROC curve; gravitational waves; HIERARCHICAL-CLASSIFICATION;
D O I
10.1109/ACCESS.2017.2684902
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a method for improving the classification performance of a classifier, termed the classifier graph, by embedding it in a graph of classifiers. Our graph-based method has the advantage of enabling delicate classification from different levels of interpretation and abstraction. For the problem that thresholds corresponding to different classifiers are correlated and thus have mutual effects on the final performance, we provide a generalization of the receiver operator characteristic curve that properly tunes them jointly to obtain optimal performance. This method is successfully applied to the detection of noise artifacts (glitches) in the gravitational-wave data. We thus obtain an improvement up to 10% on the classification performance compared with that of a single classifier. The methods of this paper provide an effective way to improve the classification performance with multiple classifiers.
引用
收藏
页码:7975 / 7984
页数:10
相关论文
共 50 条
  • [11] Lunar Gravitational-Wave Detection
    Branchesi, Marica
    Falanga, Maurizio
    Harms, Jan
    Jani, Karan
    Katsanevas, Stavros
    Lognonne, Philippe
    Badaracco, Francesca
    Cacciapuoti, Luigi
    Cappellaro, Enrico
    Dell'Agnello, Simone
    de Raucourt, Sebastien
    Frigeri, Alessandro
    Giardini, Domenico
    Jennrich, Oliver
    Kawamura, Taichi
    Korol, Valeriya
    Landro, Martin
    Majstorovic, Josipa
    Marmat, Piyush
    Mazzali, Paolo
    Muccino, Marco
    Patat, Ferdinando
    Pian, Elena
    Piran, Tsvi
    Rosat, Severine
    Rowan, Sheila
    Staehler, Simon
    Tissino, Jacopo
    SPACE SCIENCE REVIEWS, 2023, 219 (08)
  • [12] Classifier for gravitational-wave inspiral signals in nonideal single-detector data
    Kapadia, S. J.
    Dent, T.
    Dal Canton, T.
    PHYSICAL REVIEW D, 2017, 96 (10)
  • [13] Analysis of gravitational-wave data
    Faculty of Physics, University of Bialystok, Poland
    不详
    Analysis of Gravitational-Wave Data, 1600, (1-257):
  • [14] Displacement- and timing-noise-free gravitational-wave detection
    Chen, YB
    Kawamura, S
    PHYSICAL REVIEW LETTERS, 2006, 96 (23)
  • [15] Neutron displacement noise-free interferometer for gravitational-wave detection
    Nishizawa, Atsushi
    Iwaguchi, Shoki
    Chen, Yanbei
    Morimoto, Taigen
    Ishikawa, Tomohiro
    Wu, Bin
    Watanabe, Izumi
    Kawasaki, Yuki
    Shimizu, Ryuma
    Shimizu, Hirohiko
    Kitaguchi, Masaaki
    Michimura, Yuta
    Kawamura, Seiji
    PHYSICAL REVIEW D, 2022, 105 (12)
  • [16] Gravitational-wave Geodesy: A New Tool for Validating Detection of the Stochastic Gravitational-wave Background
    Callister, T. A.
    Coughlin, M. W.
    Kanner, J. B.
    ASTROPHYSICAL JOURNAL LETTERS, 2018, 869 (02)
  • [18] Shot noise in the astrophysical gravitational-wave background
    Jenkins, Alexander C.
    Sakellariadou, Mairi
    PHYSICAL REVIEW D, 2019, 100 (06)
  • [19] GRAVITATIONAL-WAVE DETECTION Entanglement at work
    Flaminio, Raffaele
    NATURE PHYSICS, 2017, 13 (08) : 723 - 724
  • [20] GRAVITATIONAL-WAVE DETECTION - A NONMECHANICAL EFFECT
    FAKIR, R
    ASTROPHYSICAL JOURNAL, 1993, 418 (01): : 202 - 207