Comparison of reconstruction algorithm for compressive sensing magnetic resonance imaging

被引:4
|
作者
Kong, Fanqiang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Astronaut, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
compressed sensing; magnetic resonance imaging; iterative shrinkage/threshold algorithm; exponential wavelet transform; DENSITY;
D O I
10.1007/s11042-017-4985-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Compressed sensing can reconstruct the undersampled image. The combination of compressed sensing and magnetic resonance imaging is a potential future fast imaging method in hospitals. This study investigated five state-of-the-art reconstruction approaches: iterative shrinkage/threshold algorithm (ISTA), fast ISTA, subband-adaptive ISTA, exponential wavelet transform ISTA, and exponential wavelet ISTA with random search (EWISTARS). The simulation results compared the five algorithms over hand image and shoulder image. Finally, we can observe the EWISTARS obtains the best result.
引用
收藏
页码:22617 / 22628
页数:12
相关论文
共 50 条
  • [31] Artificial Immune Algorithm Based Signal Reconstruction for Compressive Sensing
    Li, Dan
    Shi, Chunli
    Wang, Qiang
    Shen, Yi
    Wang, Yan
    [J]. 2014 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC) PROCEEDINGS, 2014, : 76 - 81
  • [32] Object reconstruction by compressive sensing based normalized ghost imaging
    Guo, Shu-Xu
    Zhang, Chi
    Cao, Jun-Sheng
    Zhong, Fei
    Gao, Feng-Li
    [J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 (01): : 288 - 294
  • [33] A Comparative Study of Compressive Sensing Algorithms for Hyperspectral Imaging Reconstruction
    Justo, Jon Alvarez
    Lupu, Daniela
    Orlandic, Milica
    Necoara, Ion
    Johansen, Tor Arne
    [J]. 2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,
  • [34] SAR Image Reconstruction via Incremental Imaging With Compressive Sensing
    Kang, Min-Seok
    Baek, Jae-Min
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (04) : 4450 - 4463
  • [35] Bias field correction for improved compressed sensing reconstruction in parallel magnetic resonance imaging
    Wang, Fang
    Fang, Lei
    Peng, Xuehua
    Wu, Min
    Wang, Wenzhi
    Zhang, Wenhan
    Zhu, Baiqu
    Wan, Miao
    Hu, Xin
    Shao, Jianbo
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (04) : 687 - 693
  • [36] Joint reconstruction framework of compressed sensing and nonlinear parallel imaging for dynamic cardiac magnetic resonance imaging
    Zhanqi Hu
    Cailei Zhao
    Xia Zhao
    Lingyu Kong
    Jun Yang
    Xiaoyan Wang
    Jianxiang Liao
    Yihang Zhou
    [J]. BMC Medical Imaging, 21
  • [37] Joint reconstruction framework of compressed sensing and nonlinear parallel imaging for dynamic cardiac magnetic resonance imaging
    Hu, Zhanqi
    Zhao, Cailei
    Zhao, Xia
    Kong, Lingyu
    Yang, Jun
    Wang, Xiaoyan
    Liao, Jianxiang
    Zhou, Yihang
    [J]. BMC MEDICAL IMAGING, 2021, 21 (01)
  • [38] An Efficient Lightweight Generative Adversarial Network for Compressed Sensing Magnetic Resonance Imaging Reconstruction
    Xu, Jianan
    Bi, Wanqing
    Yan, Lier
    Du, Hongwei
    Qiu, Bensheng
    [J]. IEEE ACCESS, 2023, 11 : 24604 - 24614
  • [39] Bias field correction for improved compressed sensing reconstruction in parallel magnetic resonance imaging
    Fang Wang
    Lei Fang
    Xuehua Peng
    Min Wu
    Wenzhi Wang
    Wenhan Zhang
    Baiqu Zhu
    Miao Wan
    Xin Hu
    Jianbo Shao
    [J]. Signal, Image and Video Processing, 2021, 15 : 687 - 693
  • [40] Magnetic Resonance Imaging in Non-compressive Myelopathy
    Pawar, Abhijit D.
    Rangankar, Varsha P.
    Jagtap, Prajakta R.
    [J]. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, 2019, 13 (12)