Comparison of reconstruction algorithm for compressive sensing magnetic resonance imaging

被引:4
|
作者
Kong, Fanqiang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Astronaut, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
compressed sensing; magnetic resonance imaging; iterative shrinkage/threshold algorithm; exponential wavelet transform; DENSITY;
D O I
10.1007/s11042-017-4985-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Compressed sensing can reconstruct the undersampled image. The combination of compressed sensing and magnetic resonance imaging is a potential future fast imaging method in hospitals. This study investigated five state-of-the-art reconstruction approaches: iterative shrinkage/threshold algorithm (ISTA), fast ISTA, subband-adaptive ISTA, exponential wavelet transform ISTA, and exponential wavelet ISTA with random search (EWISTARS). The simulation results compared the five algorithms over hand image and shoulder image. Finally, we can observe the EWISTARS obtains the best result.
引用
收藏
页码:22617 / 22628
页数:12
相关论文
共 50 条
  • [1] Comparison of reconstruction algorithm for compressive sensing magnetic resonance imaging
    Fanqiang Kong
    [J]. Multimedia Tools and Applications, 2018, 77 : 22617 - 22628
  • [2] COHERENCE ANALYSIS OF COMPRESSIVE SENSING BASED MAGNETIC RESONANCE IMAGING RECONSTRUCTION
    Zhu, Kai
    Zhang, Cishen
    Zhang, Jingxin
    [J]. 2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2016, : 704 - 710
  • [3] Efficient Resolution Enhancement Algorithm for Compressive Sensing Magnetic Resonance Image Reconstruction
    Omer, Osama A.
    Bassiouny, M. Atef
    Morooka, Ken'ichi
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT I, 2015, 9279 : 519 - 527
  • [4] Compressive Sensing Magnetic Resonance Imaging Reconstruction Based on Nonlocal Autoregressive Modeling
    Wu, Xi
    Wang, Jin
    Xu, Wei
    Zhu, Qing
    [J]. TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [5] Efficient directionality-driven dictionary learning for compressive sensing magnetic resonance imaging reconstruction
    Arun, Anupama
    Thomas, Thomas James
    Rani, J. Sheeba
    Gorthi, R. K. Sai Subrahmanyam
    [J]. JOURNAL OF MEDICAL IMAGING, 2020, 7 (01)
  • [6] Magnetic Resonance(MR) Image Reconstruction using Compressive Sensing
    Waseem, Mona
    Anwar, Syed
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2015, 15 (01): : 66 - 70
  • [7] Multilevel magnetic resonance imaging compression using compressive sensing
    Tashan, Tariq
    Al-Azawi, Maher
    [J]. IET IMAGE PROCESSING, 2018, 12 (12) : 2186 - 2191
  • [8] Reconstruction algorithm for novel ultrafast magnetic resonance imaging
    Rybicki, FJ
    Patz, S
    Hrovat, MI
    Pulyer, YM
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 1999, 10 (03) : 209 - 215
  • [9] Analysis and Application of Compressive Sensing Technique for Rapid Magnetic Resonance Imaging
    Kavitha, S.
    Shrividya, G.
    Bharathi, S. H.
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2016, : 405 - 408
  • [10] Comparison of compressed sensing reconstruction algorithms for 31P magnetic resonance spectroscopic imaging
    Santos-Diaz, Alejandro
    Noseworthy, Michael D.
    [J]. MAGNETIC RESONANCE IMAGING, 2019, 59 : 88 - 96