Graph Regularized Sparse Autoencoders with Nonnegativity Constraints

被引:1
|
作者
Teng, Yueyang [1 ]
Liu, Yichao [1 ]
Yang, Jinliang [1 ]
Li, Chen [1 ]
Qi, Shouliang [1 ]
Kang, Yan [1 ]
Fan, Fenglei [2 ]
Wang, Ge [2 ]
机构
[1] Northeastern Univ, Sino Dutch Biomed & Informat Engn Sch, Shenyang, Liaoning, Peoples R China
[2] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
关键词
Autoencoder; Deep network; Graph regularization; Part-based representation; Unsupervised learning; DEEP; DIMENSIONALITY; ALGORITHM;
D O I
10.1007/s11063-019-10039-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised feature learning with deep networks has been widely studied in recent years. Among these networks, deep autoencoders have shown a decent performance in discovering hidden geometric structure of the original data. Both nonnegativity and graph constraints show the effectiveness in representing intrinsic structures in the high dimensional ambient space. This paper combines the nonnegativity and graph constraints to find the original geometrical information intrinsic to high dimensional data, keeping it in a dimensionality reduced space. In the experiments, we test the proposed networks on several standard image data sets. The results demonstrate that they outperform existing methods.
引用
收藏
页码:247 / 262
页数:16
相关论文
共 50 条
  • [21] Low-Rank Graph Regularized Sparse Coding
    Zhang, Yupei
    Liu, Shuhui
    Shang, Xuequn
    Xiang, Ming
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 177 - 190
  • [22] Geometry Regularized Autoencoders
    Duque, Andres F.
    Morin, Sacha
    Wolf, Guy
    Moon, Kevin R.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7381 - 7394
  • [23] Enhancing Gene Mutation Prediction With Sparse Regularized Autoencoders in Lung Cancer Radiomics Analysis
    Munir, Muhammad Asif
    Shah, Reehan Ali
    Ali, Munwar
    Laghari, Asif Ali
    Almadhor, Ahmad
    Gadekallu, Thippa Reddy
    IEEE ACCESS, 2025, 13 : 7407 - 7425
  • [24] Discriminative Feature Learning via Sparse Autoencoders with Label Consistency Constraints
    Cong Hu
    Xiao-Jun Wu
    Zhen-Qiu Shu
    Neural Processing Letters, 2019, 50 : 1079 - 1091
  • [25] Discriminative Feature Learning via Sparse Autoencoders with Label Consistency Constraints
    Hu, Cong
    Wu, Xiao-Jun
    Shu, Zhen-Qiu
    NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1079 - 1091
  • [26] Sparse norm regularized attribute selection for graph neural networks
    Jiang, Bo
    Wang, Beibei
    Luo, Bin
    PATTERN RECOGNITION, 2023, 137
  • [27] Regularized online tensor factorization for sparse knowledge graph embeddings
    Zulaika, Unai
    Almeida, Aitor
    Lopez-de-Ipina, Diego
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (01): : 787 - 797
  • [28] Locally Regularized Sparse Graph by Fast Proximal Gradient Descent
    Sun, Dongfang
    Yang, Yingzhen
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2069 - 2077
  • [29] Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
    Li, Shicheng
    Lai, Shumin
    Jiang, Yan
    Wang, Wenle
    Yi, Yugen
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [30] Local graph regularized sparse reconstruction for salient object detection
    Huo, Lina
    Yang, Shuyuan
    Jiao, Licheng
    Wang, Shigang
    Wang, Shuang
    NEUROCOMPUTING, 2016, 194 : 348 - 359