Graph Regularized Sparse Autoencoders with Nonnegativity Constraints

被引:1
|
作者
Teng, Yueyang [1 ]
Liu, Yichao [1 ]
Yang, Jinliang [1 ]
Li, Chen [1 ]
Qi, Shouliang [1 ]
Kang, Yan [1 ]
Fan, Fenglei [2 ]
Wang, Ge [2 ]
机构
[1] Northeastern Univ, Sino Dutch Biomed & Informat Engn Sch, Shenyang, Liaoning, Peoples R China
[2] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
关键词
Autoencoder; Deep network; Graph regularization; Part-based representation; Unsupervised learning; DEEP; DIMENSIONALITY; ALGORITHM;
D O I
10.1007/s11063-019-10039-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised feature learning with deep networks has been widely studied in recent years. Among these networks, deep autoencoders have shown a decent performance in discovering hidden geometric structure of the original data. Both nonnegativity and graph constraints show the effectiveness in representing intrinsic structures in the high dimensional ambient space. This paper combines the nonnegativity and graph constraints to find the original geometrical information intrinsic to high dimensional data, keeping it in a dimensionality reduced space. In the experiments, we test the proposed networks on several standard image data sets. The results demonstrate that they outperform existing methods.
引用
收藏
页码:247 / 262
页数:16
相关论文
共 50 条
  • [1] Graph Regularized Sparse Autoencoders with Nonnegativity Constraints
    Yueyang Teng
    Yichao Liu
    Jinliang Yang
    Chen Li
    Shouliang Qi
    Yan Kang
    Fenglei Fan
    Ge Wang
    Neural Processing Letters, 2019, 50 : 247 - 262
  • [2] Automatic Modulation Classification Using Deep Learning Based on Sparse Autoencoders With Nonnegativity Constraints
    Ali, Afan
    Fan Yangyu
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (11) : 1626 - 1630
  • [3] Deep Learning of Part-Based Representation of Data Using Sparse Autoencoders With Nonnegativity Constraints
    Hosseini-Asl, Ehsan
    Zurada, Jacek M.
    Nasraoui, Olfa
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (12) : 2486 - 2498
  • [4] Regularized sparse feature selection with constraints embedded in graph Laplacian matrix
    Noorie, Zahir
    Afsari, Fatemeh
    2017 3RD IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2017, : 126 - 130
  • [5] Graph regularized and sparse nonnegative matrix factorization with hard constraints for data representation
    Sun, Fuming
    Xu, Meixiang
    Hu, Xuekao
    Jiang, Xiaojun
    NEUROCOMPUTING, 2016, 173 : 233 - 244
  • [6] Sparse recovery under nonnegativity and sum-to-one constraints
    Li, Xiao-Peng
    Leung, Chi-Sing
    So, Hing Cheung
    INFORMATION SCIENCES, 2024, 679
  • [7] Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints
    Meng, Yang
    Shang, Ronghua
    Jiao, Licheng
    Zhang, Wenya
    Yang, Shuyuan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 69 : 24 - 35
  • [8] Orthogonal graph regularized non-negative matrix factorization under sparse constraints for clustering
    Chen, Yasong
    Qu, Guangwei
    Zhao, Junjian
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [9] Cross-covariance regularized autoencoders for nonredundant sparse feature representation
    Chen, Jie
    Wu, ZhongCheng
    Zhang, Jun
    Li, Fang
    Li, WenJing
    Wu, ZiHeng
    NEUROCOMPUTING, 2018, 316 : 49 - 58
  • [10] Sparse Recovery With Graph Constraints
    Wang, Meng
    Xu, Weiyu
    Mallada, Enrique
    Tang, Ao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 1028 - 1044