A VARIATION ON SELBERG'S APPROXIMATION PROBLEM

被引:5
|
作者
Kelly, Michael [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
EXTREMAL-FUNCTIONS;
D O I
10.1112/S0025579314000199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let alpha is an element of C in the upper half-plane and let I be an interval. We construct an analogue of Selberg's majorant of the characteristic function of I that vanishes at the point alpha. The construction is based on the solution to an extremal problem with positivity and interpolation constraints. Moreover, the passage from the auxiliary extremal problem to the construction of Selberg's function with vanishing is easily adapted to provide analogous "majorants with vanishing" for any Beurling-Selberg majorant.
引用
收藏
页码:213 / 235
页数:23
相关论文
共 50 条
  • [21] The monopolist’s problem: existence, relaxation, and approximation
    Marina Ghisi
    Massimo Gobbino
    Calculus of Variations and Partial Differential Equations, 2005, 24 : 111 - 129
  • [22] Herrero's approximation problem for quasidiagonal operators
    Brown, NP
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 186 (02) : 360 - 365
  • [23] The monopolist's problem: existence, relaxation, and approximation
    Ghisi, M
    Gobbino, M
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (01) : 111 - 129
  • [24] Curved domain approximation in Dirichlet's problem
    Lee, M
    Choo, SM
    Chung, SK
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2003, 40 (06) : 1075 - 1083
  • [25] On Linnik’s approximation to Goldbach’s problem. II
    J. Pintz
    I. Z. Ruzsa
    Acta Mathematica Hungarica, 2020, 161 : 569 - 582
  • [26] GAUSSIAN SUBORDINATION FOR THE BEURLING-SELBERG EXTREMAL PROBLEM
    Carneiro, Emanuel
    Littmann, Friedrich
    Vaaler, Jeffrey D.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (07) : 3493 - 3534
  • [27] ON LINNIK'S APPROXIMATION TO GOLDBACH'S PROBLEM. II
    Pintz, J.
    Ruzsa, I. Z.
    ACTA MATHEMATICA HUNGARICA, 2020, 161 (02) : 569 - 582
  • [28] Selberg's sieve of irregular density
    Friedlander, J. B.
    Iwaniec, H.
    ACTA ARITHMETICA, 2023, 209 (01) : 385 - 396
  • [29] HECKE'S THEORY AND THE SELBERG CLASS
    Kaczorowski, J.
    Molteni, G.
    Perelli, A.
    Steuding, J.
    Wolfart, J.
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2006, 35 (01) : 183 - 193
  • [30] Selberg’s method in the problem about the zeros of linear combinations of L-functions on the critical line
    I. S. Rezvyakova
    Doklady Mathematics, 2015, 92 : 448 - 451