Is Silicon Photonics a Competitive Technology to Enable Better and Highly Performing Networks?

被引:4
|
作者
Ogawa, Kensuke [1 ]
Nishide, Kenji [1 ]
机构
[1] Fujikura Ltd, Adv Technol Lab, 1440 Mutsuzaki, Sakura, Chiba 2858550, Japan
关键词
FREE-CARRIER ABSORPTION; INFRARED-ABSORPTION; OPTICAL MODULATOR; TRANSMISSION; LIGHT; MODE;
D O I
10.1007/978-3-642-10503-6_16
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This chapter focuses on the fundamental and high-speed characteristics of small-footprint integrated optical modulators designed and fabricated on the basis of the silicon-photonic platform to assess their key performance factors in applications related to high-capacity energy-efficient optical networks transmitting data in various modulation formats. The design and characteristics of high-speed silicon rib-waveguide phase shifters, which are most essential in the high-speed optical modulators, are described. A low-loss quasi-single-mode silicon rib-waveguide phase shifter with reduced RC delay is highlighted along with its design features and fundamental performances in terms of optical loss and on/off dynamic response. Free-carrier plasma dispersion is reviewed as a physical process for performing optical modulation, which allows a reduction in thermal drift and frequency chirping. The plasma dispersion has a unique property in that signal distortion due to residual intensity modulation cancels with the nonlinear voltage dependence of the optical phase, thereby being useful for zero-chirp optical modulators to eliminate transmission impairments. The on-off keying performance of a silicon optical modulator using a single Mach-Zehnder interferometer waveguide is described in the first example of optical network applications with emphasis on a 10-Gb/s dispersion tolerance comparable to that of a commercial lithium niobate modulator. The advantage of silicon-photonic integration is remarkable, in particular, for the ultrasmall-footprint silicon optical modulator consisting of a pair of IQ nested Mach-Zehnder interferometers for two orthogonal polarization components and a polarization multiplexer monolithically integrated on a silicon chip. Such a chip is presented with respect to applications in digital coherent communication in optical-fiber links up to 1000 km long at a bit rate as high as 128 Gb/s.
引用
收藏
页码:447 / 472
页数:26
相关论文
共 50 条
  • [21] Silicon Photonics Packaging for Highly Scalable Optical Interconnects
    La Porta, A.
    Weiss, J.
    Dangel, R.
    Jubin, D.
    Meier, N.
    Hofrichter, J.
    Caer, C.
    Horst, F.
    Offrein, B. J.
    [J]. 2015 IEEE 65TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2015, : 1299 - 1304
  • [22] 'In-chip' devices enable truly 3D silicon photonics
    Overton, Gail
    [J]. LASER FOCUS WORLD, 2017, 53 (12): : 15 - 18
  • [23] Advances in amorphous silicon integrated photonics science and technology
    Halada, GP
    Chawda, S
    Mawyin, J
    Tonucci, RJ
    Mahan, AH
    Fortmann, CM
    [J]. Amorphous and Nanocrystalline Silicon Science and Technology-2005, 2005, 862 : 387 - 392
  • [24] 200-mm Silicon Photonics Technology Development
    Li, Bin
    Tang, Bo
    Zhang, Peng
    Liu, Ruonan
    Li, Zhihua
    [J]. NANOPHOTONICS AND MICRO/NANO OPTICS V, 2019, 11193
  • [25] Silicon Photonics Optical DeMUX Technology for WDM Applications
    Jeong, Seok-Hwan
    Tanaka, Yu
    Morito, Ken
    [J]. 2014 12TH INTERNATIONAL CONFERENCE ON OPTICAL INTERNET (COIN), 2014,
  • [26] Deployment of Silicon Photonics Technology in Data Communication Applications
    De Dobbelaere, P.
    Armijo, G.
    Balardeta, J.
    Barabas, S.
    Chase, B.
    Chi, Y.
    Dahl, A.
    De Koninck, Y.
    Denton, S.
    Eker, M.
    Fathpour, S.
    Foltz, D.
    Gholami, F.
    Gloeckner, S.
    Hon, K. Y.
    Hovey, S.
    Jackson, S.
    Li, W.
    Liang, Y.
    Mack, M.
    Masini, G.
    McGee, G.
    Mekis, A.
    Pang, S.
    Peterson, M.
    Pinguet, T.
    Planchon, L.
    Roberson, K.
    Sahni, S.
    Schramm, J.
    Sharp, M.
    Sohn, C.
    Stechschulte, K.
    Sun, P.
    Vastola, G.
    Wang, S.
    Wong, G.
    Xu
    Yokoyama, K.
    Yu, S.
    Zhou, R.
    [J]. 2016 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2016,
  • [27] The Foundry Model for Silicon Photonics - Technology, Challenges, and Opportunities
    Lo, G. Q.
    Teo, Selin H. G.
    Yu, M. B.
    Liow, T. Y.
    Lim, A.
    Song, J. F.
    Liang, D.
    Tu, X. G.
    Luo, X. S.
    Duan, N.
    Jia, L. X.
    Kwong, D. L.
    [J]. 2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [28] Bidirectional NPN ESD Protection in Silicon Photonics Technology
    Boschke, Roman
    Chen, Shih-Hung
    Hellings, Geert
    Scholz, Mirko
    De Heyn, Peter
    Verheyen, Peter
    van Campenhout, Joris
    Linten, Dimitri
    Thean, Aaron
    Groeseneken, Guido
    [J]. 2016 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2016,
  • [29] A Silicon Photonics Technology for 400 Gbit/s Applications
    Boeuf, F.
    Fincato, A.
    Maggi, L.
    Carpentier, J. F.
    Le Maitre, P.
    Shaw, M.
    Cremer, S.
    Vulliet, N.
    Baudot, C.
    Monfray, S.
    Jan, S.
    Deglise, C.
    Manouvrier, J. R.
    Durand, C.
    Simbula, A.
    Goguet, D.
    Bar, P.
    Ristoiu, D.
    Leverd, F.
    Babaud, L.
    Daverio, A.
    Binda, M.
    Bazzotti, A.
    Canciamilla, A.
    Ramini, L.
    Traldi, M.
    Gambini, P.
    [J]. 2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2019,
  • [30] The evolution of silicon photonics as an enabling technology for optical interconnection
    Doylend, Jonathan K.
    Knights, Andrew P.
    [J]. LASER & PHOTONICS REVIEWS, 2012, 6 (04) : 504 - 525