Ontology-Based Data Integration between Clinical and Research Systems

被引:56
|
作者
Mate, Sebastian [1 ]
Koepcke, Felix [2 ]
Toddenroth, Dennis [1 ]
Martin, Marcus [3 ]
Prokosch, Hans-Ulrich [1 ,2 ]
Buerkle, Thomas [4 ]
Ganslandt, Thomas [2 ]
机构
[1] Univ Erlangen Nurnberg, Inst Med Informat, Erlangen, Germany
[2] Erlangen Univ Hosp, Ctr Med Informat & Commun, Erlangen, Germany
[3] Erlangen Univ Hosp, Tumor Ctr, Erlangen, Germany
[4] Bern Univ Appl Sci, Inst Med Informat, Bern, Switzerland
来源
PLOS ONE | 2015年 / 10卷 / 01期
关键词
ELECTRONIC HEALTH RECORDS; MEDICAL INFORMATICS; NCI THESAURUS; DATA ELEMENTS; INTEROPERABILITY; CANCER; FRAMEWORK; IDENTIFICATION; ARCHITECTURE; EXTRACTION;
D O I
10.1371/journal.pone.0116656
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Data from the electronic medical record comprise numerous structured but uncoded elements, which are not linked to standard terminologies. Reuse of such data for secondary research purposes has gained in importance recently. However, the identification of relevant data elements and the creation of database jobs for extraction, transformation and loading (ETL) are challenging: With current methods such as data warehousing, it is not feasible to efficiently maintain and reuse semantically complex data extraction and trans-formation routines. We present an ontology-supported approach to overcome this challenge by making use of abstraction: Instead of defining ETL procedures at the database level, we use ontologies to organize and describe the medical concepts of both the source system and the target system. Instead of using unique, specifically developed SQL statements or ETL jobs, we define declarative transformation rules within ontologies and illustrate how these constructs can then be used to automatically generate SQL code to perform the desired ETL procedures. This demonstrates how a suitable level of abstraction may not only aid the interpretation of clinical data, but can also foster the reutilization of methods for un-locking it.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] An ontology-based documentation of data discovery and integration process in cancer outcomes research
    Zhang, Hansi
    Guo, Yi
    Prosperi, Mattia
    Bian, Jiang
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (Suppl 4)
  • [22] An ontology-based documentation of data discovery and integration process in cancer outcomes research
    Hansi Zhang
    Yi Guo
    Mattia Prosperi
    Jiang Bian
    [J]. BMC Medical Informatics and Decision Making, 20
  • [23] An Ontology-Based Data Integration system for data and multimedia sources
    Beneventano, Domenico
    Orsini, Mirko
    Po, Laura
    Sala, Antonio
    Sorrentino, Serena
    [J]. 2009 IEEE THIRD INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2009), 2009, : 606 - 611
  • [24] Spatial Data Integration using Ontology-Based Approach
    Hasani, S.
    Sadeghi-Niaraki, A.
    Jelokhani-Niaraki, M.
    [J]. INTERNATIONAL CONFERENCE ON SENSORS & MODELS IN REMOTE SENSING & PHOTOGRAMMETRY, 2015, 41 (W5): : 293 - 296
  • [25] A Fuzzy Ontology-Based Semantic Data Integration System
    Yaguinuma, Cristiane A.
    Afonso, Gustavo F.
    Ferraz, Vinicius
    Borges, Sergio
    Santos, Marilde T. P.
    [J]. JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2011, 10 (03) : 285 - 299
  • [26] Ontology-based metabolomics data integration with quality control
    Buendia, Patricia
    Bradley, Ray M.
    Taylor, Thomas J.
    Schymanski, Emma L.
    Patti, Gary J.
    Kabuka, Mansur R.
    [J]. BIOANALYSIS, 2019, 11 (12) : 1139 - 1156
  • [27] OntoDataClean: Ontology-based integration and preprocessing of distributed data
    Perez-Rey, David
    Anguita, Alberto
    Crespo, Jose
    [J]. BIOLOGICAL AND MEDICAL DATA ANALYSIS, PROCEEDINGS, 2006, 4345 : 262 - +
  • [28] Source Information Disclosure in Ontology-Based Data Integration
    Benedikt, Michael
    Grau, Bernardo Cuenca
    Kostylev, Egor V.
    [J]. THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1056 - 1062
  • [29] Ontology-based teacher-context data integration
    Nashed, Nader N.
    Lahoud, Christine
    Abel, Marie-Helene
    [J]. 2022 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII 2022), 2022, : 809 - 814
  • [30] Efficient Ontology-Based Data Integration with Canonical IRIs
    Xiao, Guohui
    Hovland, Dag
    Bilidas, Dimitris
    Rezk, Martin
    Giese, Martin
    Calvanese, Diego
    [J]. SEMANTIC WEB (ESWC 2018), 2018, 10843 : 697 - 713