A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries

被引:26
|
作者
Fu, Chengyin [1 ]
Iacob, Mihail [2 ]
Sheima, Yauhen [3 ]
Battaglia, Corsin [1 ]
Duchene, Leo [1 ]
Seidl, Lukas [1 ]
Opris, Dorina M. [2 ]
Remhof, Arndt [1 ]
机构
[1] Empa, Mat Energy Convers, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland
[2] Empa, Funct Polymers, Swiss Fed Labs Mat Sci & Technol, CH-8600 Dubendorf, Switzerland
[3] Ecole Polytech Fed Lausanne EPFL, Inst Mat, Stn 12, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
DIELECTRIC-PROPERTIES; IONIC-CONDUCTIVITY; COMPOSITE ELECTROLYTES; POLY(ETHYLENE OXIDE); CYCLIC CARBONATE; SIDE-CHAINS; THIN; ELASTOMERS; DESIGN; ANODE;
D O I
10.1039/d1ta02689e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Replacing the flammable liquid electrolyte currently used in most rechargeable lithium-ion batteries with a solid polymer electrolyte promises improved operational safety and increased energy density, e.g. by enabling lithium metal anodes. Polymer electrolytes typically suffer from low lithium-ion conductivity and limited electrochemical stability. We introduce a novel electrolyte based on a chemically cross-linked polysiloxane elastomer, modified with 3-mercaptopropiononitrile groups. The polysiloxane chains ensure high elasticity and low glass transition temperature, while the nitrile groups offer high dielectric permittivity and weak interaction with Li+. Combining these two properties into a solid polymer electrolyte results in excellent elasticity with no hysteresis after cyclic deformation, a low glass transition temperature (-51 degrees C), a high thermal stability up to at least 300 degrees C, an ionic conductivity of 4.8 x 10(-5) S cm(-1) at 60 degrees C, and a high transference number of 0.53. In all-solid-state symmetric lithium cells, this electrolyte enables stable lithium plating and stripping at 0.1 mA cm(-2) for over 1600 h at 60 degrees C. An all-solid-state full cell with a lithium iron phosphate cathode (areal capacity of 0.6 mA h cm(-2)) and lithium metal anode shows a high initial capacity of 134 mA h g(-1) and 75% capacity retention after 150 cycles at 0.1 mA cm(-2) at 60 degrees C. Preliminary results show that a room-temperature ionic conductivity as high as 6.4 x 10(-4) S cm(-1) and stable lithium plating and stripping at 0.2 mA cm(-2) for over 120 h at 22 degrees C can be achieved when the electrolyte is soaked in 1,2-dimethoxyethane.
引用
收藏
页码:11794 / 11801
页数:8
相关论文
共 50 条
  • [21] Investigation on the mechanical integrity of a PEO-based polymer electrolyte in all-solid-state lithium batteries
    Yang, Qinhua
    Kong, Detao
    Fu, Liang
    He, Yaolong
    Hu, Hongjiu
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (10) : 8125 - 8140
  • [22] In situ observation of lithium metal plating in a sulfur-based solid electrolyte for all-solid-state batteries
    Kim, Seong Heon
    Kim, KiHong
    Choi, Hyungkook
    Im, Dongmin
    Heo, Sung
    Choi, Hong Soo
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (22) : 13650 - 13657
  • [23] Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte
    Wang, Su
    Sun, Qifang
    Peng, Wenxiu
    Ma, Yue
    Zhou, Ying
    Song, Dawei
    Zhang, Hongzhou
    Shi, Xixi
    Li, Chunliang
    Zhang, Lianqi
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 85 - 93
  • [24] Ultrathin, Flexible Polymer Electrolyte for Cost-Effective Fabrication of All-Solid-State Lithium Metal Batteries
    Wu, Jingyi
    Rao, Zhixiang
    Cheng, Zexiao
    Yuan, Lixia
    Li, Zhen
    Huang, Yunhui
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (46)
  • [25] Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte
    Su Wang
    Qifang Sun
    Wenxiu Peng
    Yue Ma
    Ying Zhou
    Dawei Song
    Hongzhou Zhang
    Xixi Shi
    Chunliang Li
    Lianqi Zhang
    [J]. Journal of Energy Chemistry, 2021, 58 (07) : 85 - 93
  • [26] Self-healing polyurethane-based polymer electrolyte with high strength for all-solid-state lithium metal batteries
    Du, Xiaoyu
    Guo, Lin
    Tan, Xueling
    Wan, Long
    Tong, Yongfen
    Zhou, Dan
    Qin, Yuancheng
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 680
  • [27] THIN ALL-SOLID-STATE LITHIUM BATTERIES UTILIZING SOLID POLYMER ELECTROLYTE PREPARED BY PLASMA POLYMERIZATION
    OGUMI, Z
    UCHIMOTO, Y
    TAKEHARA, Z
    KANAMORI, Y
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (10) : 2649 - 2650
  • [28] Polyethylene glycol-based waterborne polyurethane as solid polymer electrolyte for all-solid-state lithium ion batteries
    Cong, Bing
    Song, Youxin
    Ren, Naiqing
    Xie, Gongshan
    Tao, Can
    Huang, Yiping
    Xu, Gewen
    Bao, Junjie
    [J]. MATERIALS & DESIGN, 2018, 142 : 221 - 228
  • [29] Insights of potassium hexafluorophosphate additive in solid polymer electrolyte for realizing high performance all-solid-state lithium metal batteries
    Li, Jixiao
    Liang, Jianneng
    Ren, Zhiheng
    Shi, Chuan
    Li, Yongliang
    Zhang, Lei
    Zhang, Qianling
    He, Chuanxin
    Ren, Xiangzhong
    [J]. ELECTROCHIMICA ACTA, 2022, 429
  • [30] Solid polymer electrolytes in all-solid-state lithium metal batteries: From microstructures to properties
    Lin, Zongxi
    Sheng, Ouwei
    Cai, Xiaohan
    Duan, Dan
    Yue, Ke
    Nai, Jianwei
    Wang, Yao
    Liu, Tiefeng
    Tao, Xinyong
    Liu, Yujing
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2023, 81 : 358 - 378