CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice

被引:200
|
作者
Zhang, Yu [1 ,2 ,3 ]
Long, Chengzu [1 ,2 ,3 ,5 ]
Li, Hui [1 ,2 ,3 ]
McAnally, John R. [1 ,2 ,3 ]
Baskin, Kedryn K. [1 ,2 ,3 ]
Shelton, John M. [4 ]
Bassel-Duby, Rhonda [1 ,2 ,3 ]
Olson, Eric N. [1 ,2 ,3 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Mol Biol, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Senator Paul D Wellstone Muscular Dystrophy Coope, Dallas, TX 75390 USA
[3] Univ Texas Southwestern Med Ctr Dallas, Hamon Ctr Regenerat Sci & Med, Dallas, TX 75390 USA
[4] Univ Texas Southwestern Med Ctr Dallas, Dept Internal Med, Dallas, TX 75390 USA
[5] NYU, Sch Med, Div Cardiol, New York, NY 10016 USA
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 04期
关键词
MOUSE MODEL; MUSCLE; CELLS; DNA; ENDONUCLEASE; GENERATION; CPF1;
D O I
10.1126/sciadv.1602814
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Duchenne muscular dystrophy (DMD), caused by mutations in the X-linked dystrophin gene (DMD), is characterized by fatal degeneration of striated muscles. Dilated cardiomyopathy is one of the most common lethal features of the disease. We deployed Cpf1, a unique class 2 CRISPR (clustered regularly interspaced short palindromic repeats) effector, to correct DMD mutations in patient-derived induced pluripotent stem cells (iPSCs) and mdx mice, an animal model of DMD. Cpf1-mediated genomic editing of human iPSCs, either by skipping of an out-of-frame DMD exon or by correcting a nonsense mutation, restored dystrophin expression after differentiation to cardiomyocytes and enhanced contractile function. Similarly, pathophysiological hallmarks of muscular dystrophy were corrected in mdx mice following Cpf1-mediated germline editing. These findings are the first to show the efficiency of Cpf1-mediated correction of genetic mutations in human cells and an animal disease model and represent a significant step toward therapeutic translation of gene editing for correction of DMD.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [41] CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells
    Min, Yi-Li
    Li, Hui
    Rodriguez-Caycedo, Cristina
    Mireault, Alex A.
    Huang, Jian
    Shelton, John M.
    McAnally, John R.
    Amoasii, Leonela
    Mammen, Pradeep P. A.
    Bassel-Duby, Rhonda
    Olson, Eric N.
    SCIENCE ADVANCES, 2019, 5 (03)
  • [42] CNN-SVR for CRISPR-Cpf1 Guide RNA Activity Prediction with Data Augmentation
    Zhang, Guishan
    Dai, Xianhua
    2019 9TH INTERNATIONAL CONFERENCE ON BIOSCIENCE, BIOCHEMISTRY AND BIOINFORMATICS (ICBBB 2019), 2019, : 43 - 47
  • [43] Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang
    Su Bin Moon
    Jeong Mi Lee
    Jeong Gu Kang
    Nan-Ee Lee
    Dae-In Ha
    Do Yon Kim
    Sun Hee Kim
    Kwangsun Yoo
    Daesik Kim
    Jeong-Heon Ko
    Yong-Sam Kim
    Nature Communications, 9
  • [44] In Vitro Gene Editing Catalyzed by CRISPR-Cpf1 and a Mammalian Cell-Free Extract
    Sansbury, Brett
    Wagner, Amanda
    Kmiec, Eric
    MOLECULAR THERAPY, 2018, 26 (05) : 232 - 232
  • [45] Patient-specific TP53 mutations CRISPR-Cpf1 editing in chronic lymphocytic leukemia by suicide gene delivery
    Lorenzetti, F. C.
    Papa, F. T.
    Donati, F.
    Niccheri, F.
    Valentino, F.
    Gozzetti, A.
    Bocchia, M.
    Conticello, S.
    Renieri, A.
    Mari, F.
    HUMAN GENE THERAPY, 2019, 30 (11) : A87 - A87
  • [46] Prediction of activity and specificity of CRISPR-Cpf1 using convolutional deep learning neural networks
    Luo, Jiesi
    Chen, Wei
    Xue, Li
    Tang, Bin
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [47] Combining CRISPR-Cpf1 and Recombineering Facilitates Fast and Efficient Genome Editing in Escherichia coli
    Zhu, Xuewen
    Wu, Yaokang
    Lv, Xueqin
    Liu, Yanfeng
    Du, Guocheng
    Li, Jianghua
    Liu, Long
    ACS SYNTHETIC BIOLOGY, 2022, 11 (05): : 1897 - 1907
  • [48] Development of novel antibodies for detection and analysis of CRISPR-Cpf1 RNA-guided endonucleases
    Vaks, L.
    Kraus-Faran, O.
    Bilu, S.
    Nakhlas, A.
    Veisman, B.
    Becker, N.
    Raizman, S.
    Taglicht, D.
    Ravid, D.
    FEBS JOURNAL, 2017, 284 : 173 - 173
  • [49] Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang
    Moon, Su Bin
    Lee, Jeong Mi
    Kang, Jeong Gu
    Lee, Nan-Ee
    Ha, Dae-In
    Kim, Do Yon
    Kim, Sun Hee
    Yoo, Kwangsun
    Kim, Daesik
    Ko, Jeong-Heon
    Kim, Yong-Sam
    NATURE COMMUNICATIONS, 2018, 9
  • [50] A platform for creating relevant models of hereditary diseases using human induced pluripotent stem cells and the CRISPR-Cpf1 system
    Malankhanova, T.
    Paulissen, A.
    Valetdinova, K.
    Medvedev, S.
    FEBS OPEN BIO, 2021, 11 : 91 - 91