PDE-based optimization for stochastic mapping and coverage strategies using robotic ensembles

被引:29
|
作者
Elamvazhuthi, Karthik [1 ]
Kuiper, Hendrik [2 ]
Berman, Spring [1 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85281 USA
[2] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ USA
基金
美国国家科学基金会;
关键词
Swarm robotics; Autonomous mobile robots; Optimal control; Bilinear control systems; Partial differential equations; Distributed-parameter systems; Stochastic systems; Decentralized systems;
D O I
10.1016/j.automatica.2018.06.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel partial differential equation (PDE)-based framework for controlling an ensemble of robots, which have limited sensing and actuation capabilities and exhibit stochastic behaviors, to perform mapping and coverage tasks. We model the ensemble population dynamics as an advection-diffusion-reaction PDE model and formulate the mapping and coverage tasks as identification and control problems for this model. In the mapping task, robots are deployed over a closed domain to gather data, which is unlocalized and independent of robot identities, for reconstructing the unknown spatial distribution of a region of interest. We frame this task as a convex optimization problem whose solution represents the region as a spatially-dependent coefficient in the PDE model. We then consider a coverage problem in which the robots must perform a desired activity at a programmable probability rate to achieve a target spatial distribution of activity over the reconstructed region of interest. We formulate this task as an optimal control problem in which the PDE model is expressed as a bilinear control system, with the robots' coverage activity rate and velocity field defined as the control inputs. We validate our approach with simulations of a combined mapping and coverage scenario in two environments with three target coverage distributions. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:356 / 367
页数:12
相关论文
共 50 条