The Longest Path Transit Function of a graph and Betweenness

被引:0
|
作者
Changat, Manoj [1 ]
Narasimha-Shenoi, Prasanth G. [2 ]
Pelayo, Ignacio M. [3 ]
机构
[1] Univ Kerala, Dept Futures Studies, Trivandrum 695034, Kerala, India
[2] Govt Coll, Dept Math, Chittur 678104, Palakkad, India
[3] Univ Politecn Cataluna, Dept Maternat Aplicada, ES-08034 Barcelona, Spain
关键词
longest path transit function; convexity; betweenness; single path transit function; INTERVAL FUNCTION; CONNECTED GRAPH; DETOUR NUMBER; CONVEX-SETS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A longest path between two vertices in a connected graph G is a path of maximum length between the vertices. The longest path transit function L (u, v) in a graph consists of the set of all vertices lying on any longest path between vertices u and v. A transit function L satisfies betweenness if w is an element of L(u, v) implies u is not an element of L(w, v) [(b1)-axiom] and x is an element of L(u, v) implies L(u, x) subset of L(u, v) [(b2)-axiom] and it is monotone if x, y is an element of L(u, v) implies L(x, y) subset of L(u, v). The betweenness and monotone axioms are discussed for the longest path transit function of G. Some graphs are identified for L to become a single path transit function..
引用
收藏
页码:111 / 127
页数:17
相关论文
共 50 条
  • [21] The Induced Path Transit Function and the Pasch Axiom
    Changat, Manoj
    Peterin, Iztok
    Ramachandran, Abisha
    Tepeh, Aleksandra
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S123 - S134
  • [22] LONGEST PATH IN A NETWORK
    AZPEITIA, AG
    RILEY, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1970, 30 (03) : 636 - &
  • [23] Computing the Exact Distribution Function of the Stochastic Longest Path Length in a DAG
    Ando, Ei
    Ono, Hirotaka
    Sadakane, Kunihiko
    Yamashita, Masafumi
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, 2009, 5532 : 98 - 107
  • [24] Induced path transit function, monotone and Peano axioms
    Changat, M
    Mathew, J
    DISCRETE MATHEMATICS, 2004, 286 (03) : 185 - 194
  • [25] Longest Path Selection Based on Path Identifiers
    Pomeranz, Irith
    IEEE ACCESS, 2024, 12 : 14512 - 14520
  • [26] SUBLINEAR LONGEST PATH TRANSVERSALS
    Long, James A.
    Milans, Kevin G.
    Munaro, Andrea
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 1673 - 1677
  • [27] LONGEST SIMPLE PATH IN A NETWORK
    WATHNE, M
    GEOGRAPHICAL ANALYSIS, 1976, 8 (04) : 468 - 473
  • [28] The longest path in the Price model
    Tim S. Evans
    Lucille Calmon
    Vaiva Vasiliauskaite
    Scientific Reports, 10
  • [29] On computing a longest path in a tree
    Bulterman, RW
    van den Sommen, FW
    Zwaan, G
    Verhoeff, T
    van Gasteren, AJM
    Feijen, WHJ
    INFORMATION PROCESSING LETTERS, 2002, 81 (02) : 93 - 96
  • [30] The longest path in the Price model
    Evans, Tim S.
    Calmon, Lucille
    Vasiliauskaite, Vaiva
    SCIENTIFIC REPORTS, 2020, 10 (01)