Reduced-Size Converter in DFIG-Based Wind Energy Conversion System

被引:0
|
作者
Akbari, Rasoul [1 ]
Izadian, Afshin [2 ]
机构
[1] IUPUI, Purdue Sch Engn & Technol, Dept Elect & Comp Engn ECE, Indianapolis, IN 46202 USA
[2] IUPUI, Purdue Sch Engn & Technol, Dept Elect Engn Technol, Indianapolis, IN USA
关键词
Doubly-fed induction generator (DFIG); hydraulic power transmission system; reduced-size Converters; wind power conversion system; FED INDUCTION GENERATOR; TURBINE;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Induction generators operate in a wide range of speed to accommodate the forced turbine speed tracking required by the MPPT controllers. Consequently, the size of the rotor-side converter needs to be large. This paper introduces a DFIG-based wind power conversion structure that can achieve MPPT in a narrow window of generator speed and consequently reduce the size of the converter. A new hydraulic power transmission system is employed to decouple the shafts of the generator and the turbine, allowing independent control of MPPT and generator speed regulation. The proposed DFIG is investigated by analytical calculations as well as a simulation at different wind speeds to demonstrate the reduced size of the converter and dynamic performance of the power generation.
引用
下载
收藏
页码:4217 / 4223
页数:7
相关论文
共 50 条
  • [41] A SCR crowbar commutated with power converter for DFIG-based wind turbines
    Yang, Shuying
    Zhou, Tianbao
    Sun, Dengyue
    Xie, Zhen
    Zhang, Xing
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2016, 81 : 87 - 103
  • [42] Predictive current control of a wind energy conversion system based DFIG via direct matrix converter
    Chikha, Said
    Barra, Kamel
    Reama, Abdellatif
    2015 6TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2015,
  • [43] A DFIG-based wind energy conversion system (WECS) for LVRT enhancement using a hybrid approach: an efficient MEHRFA technique
    Manohar, G.
    Venkateshwarlu, S.
    Jaya Laxmi, A.
    SOFT COMPUTING, 2021, 25 (04) : 2559 - 2574
  • [44] Fuzzy PI Control for Grid-side Converter of DFIG-based Wind Turbine System
    Liu, Shuang
    Han, Yaozhen
    Du, Cuiqi
    Li, Shuzhen
    Zhang, Haitao
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 5788 - 5793
  • [45] A nonlinear maximum power point tracking technique for DFIG-based wind energy conversion systems
    Rezaei, Mohammad Mahdi
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2018, 21 (05): : 901 - 908
  • [46] Sliding Mode Control for DFIG-based Wind Energy Conversion Optimization with Switching Gain Adjustment
    Liu, Xiangjie
    Han, Yaozhen
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 1213 - 1218
  • [47] Investigation of Fault Ride-through Behavior of DFIG-based Wind Energy Conversion Systems
    Tourou, Pavlos
    Sourkounis, Constantinos
    2014 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON 2014), 2014, : 87 - 93
  • [48] A Novel Fault-Tolerant DFIG-Based Wind Energy Conversion System for Seamless Operation During Grid Faults
    Kanjiya, Parag
    Ambati, Bharath Babu
    Khadkikar, Vinod
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (03) : 1296 - 1305
  • [49] A DFIG-based wind energy conversion system (WECS) for LVRT enhancement using a hybrid approach: an efficient MEHRFA technique
    G. Manohar
    S. Venkateshwarlu
    A. Jaya Laxmi
    Soft Computing, 2021, 25 : 2559 - 2574
  • [50] Quantitative and qualitative behavior analysis of a DFIG wind energy conversion system by a wind gust and converter faults
    Giaourakis, Dimitrios G.
    Safacas, Athanasios N.
    WIND ENERGY, 2016, 19 (03) : 527 - 546