Illumination modelling for topographic correction of Landsat 8 and Sentinel-2A imageries

被引:4
|
作者
Hudjimartsu, Sahid [1 ]
Prasetyo, Lilik [1 ]
Setiawan, Yudi [1 ]
Suyamto, Desi [1 ]
机构
[1] Bogor Agr Univ, Programme Forests2020, Environm Anal & Spatial Modelling Lab, Dept Forest Resource Conservat,Fac Forestry, Bogor, Indonesia
关键词
Illumination modelling; Landsat; 8; Sentinel-2A; solar position modelling; topographic correction;
D O I
10.1109/EMS.2017.27
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Automated classification algorithms for satellite imageries require spectral correction from terrain effects due to shading. Such terrain effects can produce reflectance bias of pixels in the same category. This study was aimed at exploring robust algorithms for correcting satellite imageries from terrain effects, applicable for either Landsat 8 or Sentinel-2A imageries. Mount Halimun-Salak and Mount Gede-Pangrango, Bogor, West Java, Indonesia, were selected as the window areas to evaluate the algorithm. We developed algorithm, which combined solar position modelling, illumination modelling, and simple statistical model to remove the terrain effects. The algorithm was proven to be able to solve overcorrection problems and result relatively consistent sensitivities in SWIR, NIR and blue bands of either Landsat 8 or Sentinel-2A imageries in both window areas from different acquisition dates and times.
引用
收藏
页码:95 / 99
页数:5
相关论文
共 50 条
  • [41] Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences
    Zhang, Hankui K.
    Roy, David P.
    Yan, Lin
    Li, Zhongbin
    Huang, Haiyan
    Vermote, Eric
    Skakun, Sergii
    Roger, Jean-Claude
    REMOTE SENSING OF ENVIRONMENT, 2018, 215 : 482 - 494
  • [42] COMPARING ATMOSPHERIC CORRECTION PERFORMANCE FOR SENTINEL-2 AND LANDSAT-8 DATA
    Pflug, Bringfried
    Richter, Rudolf
    de los Reyes, Raquel
    Reinartz, Peter
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6433 - 6436
  • [43] Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data
    Liu, Yanan
    Gong, Weishu
    Hu, Xiangyun
    Gong, Jianya
    REMOTE SENSING, 2018, 10 (06)
  • [44] Evaluating Landsat-8, Landsat-9 and Sentinel-2 imageries in land use and land cover (LULC) classification in a heterogeneous urban area
    Jombo, Simbarashe
    Adelabu, Samuel
    GEOJOURNAL, 2023, 88 (Suppl 1) : 377 - 399
  • [45] Evaluating Landsat-8, Landsat-9 and Sentinel-2 imageries in land use and land cover (LULC) classification in a heterogeneous urban area
    Simbarashe Jombo
    Samuel Adelabu
    GeoJournal, 2023, 88 : 377 - 399
  • [46] Sentinel-2A与Landsat 8数据在植被覆盖度遥感估算中的比较
    吴青云
    高飞
    李振轩
    车子杰
    测绘通报, 2021, (S1) : 104 - 108+113
  • [47] Sentinel-2A MSI and Landsat-8 OLI Spectral Reflectance Comparison in Tropical Environments - A Preliminary Research for Data Fusion
    Sofan, Parwati
    Chulafak, Galdita Aruba
    Yulianto, Fajar
    SEVENTH GEOINFORMATION SCIENCE SYMPOSIUM 2021, 2021, 12082
  • [48] Combined Retrievals of Turbidity from Sentinel-2A/B and Landsat-8/9 in the Taihu Lake through Machine Learning
    Yang, Zhe
    Gong, Cailan
    Lu, Zhihua
    Wu, Enuo
    Huai, Hongyan
    Hu, Yong
    Li, Lan
    Dong, Lei
    REMOTE SENSING, 2023, 15 (17)
  • [49] Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究
    韩涛
    潘剑君
    张培育
    曹罗丹
    遥感技术与应用 , 2018, (05) : 890 - 899
  • [50] 基于Landsat 8 OLI和Sentinel-2A的南京市各城区绿化差异分析
    钟华瀚
    饶永智
    徐丹丹
    江苏林业科技, 2018, 45 (05) : 21 - 27