Efficiently enumerating minimal triangulations

被引:2
|
作者
Carmeli, Nofar [1 ]
Kenig, Batya [1 ]
Kimelfeld, Benny [1 ]
Kroell, Markus [2 ]
机构
[1] Technion, Haifa, Israel
[2] TU Wien, Vienna, Austria
基金
以色列科学基金会; 奥地利科学基金会; 美国国家科学基金会;
关键词
Minimal triangulation; Tree decomposition; Enumeration algorithm; Minimal separators; Maximal independent sets; Maximal cliques; HYPERTREE DECOMPOSITIONS; FILL-IN; GRAPH; ALGORITHMS;
D O I
10.1016/j.dam.2020.05.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm that enumerates all the minimal triangulations of a graph in incremental polynomial time. Consequently, we get an algorithm for enumerating all the proper tree decompositions, in incremental polynomial time, where "proper'' means that the tree decomposition cannot be improved by removing or splitting a bag. The algorithm can incorporate any method for (ordinary, single result) triangulation or tree decomposition, and can serve as an anytime algorithm to improve such a method. We describe an extensive experimental study of an implementation on real data from different fields. Our experiments show that the algorithm improves upon central quality measures over the underlying tree decompositions, and is able to produce a large number of high-quality decompositions. (C) 2020 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:216 / 236
页数:21
相关论文
共 50 条
  • [41] Enumerating Minimal Subset Feedback Vertex Sets
    Fedor V. Fomin
    Pinar Heggernes
    Dieter Kratsch
    Charis Papadopoulos
    Yngve Villanger
    Algorithmica, 2014, 69 : 216 - 231
  • [42] Two characterisations of the minimal triangulations of permutation graphs
    Meister, Daniel
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2262 - 2280
  • [43] The covering type of closed surfaces and minimal triangulations
    Borghini, Eugenio
    Gabriel Minian, Elias
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 166 : 1 - 10
  • [44] FINDING INDUCED SUBGRAPHS VIA MINIMAL TRIANGULATIONS
    Fomin, Fedor V.
    Villanger, Yngve
    27TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2010), 2010, 5 : 383 - 394
  • [45] Maximum cardinality search for computing minimal triangulations
    Berry, A
    Blair, JRS
    Heggernes, P
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2002, 2573 : 1 - 12
  • [46] Coverings and minimal triangulations of 3-manifolds
    Jaco, William
    Rubinstein, J. Hyam
    Tillmann, Stephan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (03): : 1257 - 1265
  • [47] NORMAL TRIANGULATIONS IN O-MINIMAL STRUCTURES
    Baro, Elias
    JOURNAL OF SYMBOLIC LOGIC, 2010, 75 (01) : 275 - 288
  • [48] A Construction Principle for Tight and Minimal Triangulations of Manifolds
    Burton, Benjamin A.
    Datta, Basudeb
    Singh, Nitin
    Spreer, Jonathan
    EXPERIMENTAL MATHEMATICS, 2018, 27 (01) : 22 - 36
  • [49] Minimal triangulations for an infinite family of lens spaces
    Jaco, William
    Rubinstein, Hyam
    Tillmann, Stephan
    JOURNAL OF TOPOLOGY, 2009, 2 (01) : 157 - 180
  • [50] Minimal triangulations of sphere bundles over the circle
    Bagchi, Bhaskar
    Datta, Basudeb
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (05) : 737 - 752