Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells

被引:40
|
作者
Xu, Zhaopeng [1 ]
Huangfu, Huichao [1 ]
Li, Xiaowei [1 ]
Qiao, Huiling [1 ]
Guo, Wanchun [2 ]
Guo, Jingwei [1 ]
Wang, Haiyan [2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Key Lab Special Fiber & Fiber Sensor Hebei Prov, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Sch Environm & Chem Engn, Qinhuangdao 066004, Peoples R China
关键词
Nanocone; Nanohemisphere; Light trapping; Solar cells; Comsol multiphysics; OPTICAL-ABSORPTION ENHANCEMENT; METAL NANOPARTICLES; PHOTON MANAGEMENT; SILICON NANOWIRE; SURFACE; ANTIREFLECTION; NANOSTRUCTURES; SCATTERING; DESIGN; FIELD;
D O I
10.1016/j.optcom.2016.05.050
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new crystalline silicon solar cell with Si nanocone arrays on the top and Al nanohemisphere arrays on bottom surface were proposed. The light-trapping ability were systematically studied by COMSOL Multiphysics. The nanocone arrays benefit light-trapping by introducing gradient change of refractive index and coupling the incoming light into optical modes. The metallic nanohemisphere arrays affect the light-harvesting by surface plasmon polaritons (SPPs) and scattering effect. The numerical simulations show that the optimal parameters for the periodic nanocone arrays are 350 nm in diameter and 1.1 of the pitch/diameter ratio. The optimal parameters for the nanohemisphere arrays are 160 nm in diameter, 1.3 of the pitch/diameter ratio respectively. Eliminating the Ohmic Loss in metallic nanohemisphere, a 700 nm thick silicon solar cell with the combination of these two nanostructures will contribute an average absorption of 72.928% and a 33.311 mA/cm(2) short circuit photocurrent density in the wavelength of 310-1127 nm. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 109
页数:6
相关论文
共 50 条
  • [31] Light Trapping in Thin Film Solar Cells using Continuous Metasurfaces
    Shameli, Mohammad Ali
    Yousefi, Leila
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 974 - 978
  • [32] Accurate modeling of light trapping in thin film silicon solar cells
    Abouelsaood, AA
    Ghannam, MY
    Poortmans, J
    Mertens, RP
    CONFERENCE RECORD OF THE TWENTY SIXTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 1997, 1997, : 183 - 186
  • [33] Advanced Light Trapping in Thin-Film Silicon Solar Cells
    Zeman, M.
    Isabella, O.
    Jaeger, K.
    Santbergen, R.
    Liang, R.
    Solntsev, S.
    Krc, J.
    AMORPHOUS AND POLYCRYSTALLINE THIN-FILM SILICON SCIENCE AND TECHNOLOGY - 2010, 2010, 1245 : 65 - 76
  • [34] Efficient Light Trapping Structure in Thin Film Silicon Solar Cells
    Sheng, Xing
    Liu, Jifeng
    Kozinsky, Inna
    Agarwal, Anuradha M.
    Michel, Jurgen
    Kimerling, Lionel C.
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010,
  • [35] Plasmonic nanostructures for light trapping in thin-film solar cells
    Morawiec, S.
    Mendes, M. J.
    Priolo, F.
    Crupi, I.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2019, 92 : 10 - 18
  • [36] Non-Plasmonic Light Trapping for Thin Film Solar Cells
    Shalin, Alexander S.
    Simovski, Constantin R.
    Voroshilov, Pavel M.
    Belov, Pavel A.
    2014 8TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS), 2014,
  • [37] Effects of film growth modes on light trapping in silicon thin film solar cells
    Wiesendanger, S.
    Bischoff, T.
    Jovanov, V.
    Knipp, D.
    Burger, S.
    Lederer, F.
    Rockstuhl, C.
    APPLIED PHYSICS LETTERS, 2014, 104 (23)
  • [38] Efficient Light Scattering In Plasmonic Light Trapping Designs For Thin Film Solar Cells
    Ji, Liming
    Varadan, Vasundara V.
    NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2015, 2015, 9434
  • [39] New hybrid light trapping structure in silicon thin film solar cells
    Yang, F.-H. (fhyang@semi.ac.cn), 1600, Chinese Optical Society (43):
  • [40] Disorder improves nanophotonic light trapping in thin-film solar cells
    Paetzold, U. W.
    Smeets, M.
    Meier, M.
    Bittkau, K.
    Merdzhanova, T.
    Smirnov, V.
    Michaelis, D.
    Waechter, C.
    Carius, R.
    Rau, U.
    APPLIED PHYSICS LETTERS, 2014, 104 (13)