Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells

被引:40
|
作者
Xu, Zhaopeng [1 ]
Huangfu, Huichao [1 ]
Li, Xiaowei [1 ]
Qiao, Huiling [1 ]
Guo, Wanchun [2 ]
Guo, Jingwei [1 ]
Wang, Haiyan [2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Key Lab Special Fiber & Fiber Sensor Hebei Prov, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Sch Environm & Chem Engn, Qinhuangdao 066004, Peoples R China
关键词
Nanocone; Nanohemisphere; Light trapping; Solar cells; Comsol multiphysics; OPTICAL-ABSORPTION ENHANCEMENT; METAL NANOPARTICLES; PHOTON MANAGEMENT; SILICON NANOWIRE; SURFACE; ANTIREFLECTION; NANOSTRUCTURES; SCATTERING; DESIGN; FIELD;
D O I
10.1016/j.optcom.2016.05.050
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new crystalline silicon solar cell with Si nanocone arrays on the top and Al nanohemisphere arrays on bottom surface were proposed. The light-trapping ability were systematically studied by COMSOL Multiphysics. The nanocone arrays benefit light-trapping by introducing gradient change of refractive index and coupling the incoming light into optical modes. The metallic nanohemisphere arrays affect the light-harvesting by surface plasmon polaritons (SPPs) and scattering effect. The numerical simulations show that the optimal parameters for the periodic nanocone arrays are 350 nm in diameter and 1.1 of the pitch/diameter ratio. The optimal parameters for the nanohemisphere arrays are 160 nm in diameter, 1.3 of the pitch/diameter ratio respectively. Eliminating the Ohmic Loss in metallic nanohemisphere, a 700 nm thick silicon solar cell with the combination of these two nanostructures will contribute an average absorption of 72.928% and a 33.311 mA/cm(2) short circuit photocurrent density in the wavelength of 310-1127 nm. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 109
页数:6
相关论文
共 50 条
  • [1] Role of nanocone and nanohemisphere arrays in improving light trapping of thin-film solar cells
    Zhang, Taoran
    Bian, Fei
    Jia, Xiaoguang
    Wang, Chenbo
    Wang, Jian
    Wang, Haiyan
    Xu, Zhaopeng
    TENTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS, 2018, 10964
  • [2] Advanced microhole arrays for light trapping in thin film silicon solar cells
    Lockau, Daniel
    Sontheimer, Tobias
    Preidel, Veit
    Ruske, Florian
    Hammerschmidt, Martin
    Becker, Christiane
    Schmidt, Frank
    Rech, Bernd
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 125 : 298 - 304
  • [3] Broadband Antireflection and Light Trapping in Thin Film Silicon Solar Cells With Hemisphere Arrays
    Shen, Xiangqian
    Wang, Qingkang
    Wangyang, Peihua
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (13) : 1477 - 1480
  • [4] Light trapping in thin-film solar cells: the role of guided modes
    Sondergaard, T.
    Tsao, Y. -C.
    Pedersen, T. G.
    Pedersen, K.
    THIN FILMS FOR SOLAR AND ENERGY TECHNOLOGY VI, 2014, 9177
  • [5] Nanostructures for Light Trapping in Thin Film Solar Cells
    Amalathas, Amalraj Peter
    Alkaisi, Maan M.
    MICROMACHINES, 2019, 10 (09)
  • [6] Enhancement of light trapping for thin film solar cells
    Yasha Yi
    Wei Guo
    Yueheng Peng
    MRS Advances, 2019, 4 : 743 - 748
  • [7] Enhancement of light trapping for thin film solar cells
    Yi, Yasha
    Guo, Wei
    Peng, Yueheng
    MRS ADVANCES, 2019, 4 (13) : 743 - 748
  • [8] Light trapping in thin film organic solar cells
    Tang, Zheng
    Tress, Wolfgang
    Inganas, Olle
    MATERIALS TODAY, 2014, 17 (08) : 389 - 396
  • [10] Enhanced efficiency of light-trapping nanoantenna arrays for thin-film solar cells
    Simovski, Constantin
    Morits, Dmitry
    Voroshilov, Pavel
    Guzhva, Michael
    Belov, Pavel
    Kivshar, Yuri
    OPTICS EXPRESS, 2013, 21 (13): : A714 - A725