Stabilization for the Wave Equation with Singular Kelvin-Voigt Damping

被引:26
|
作者
Ammari, Kais [1 ]
Hassine, Fathi [1 ]
Robbiano, Luc [2 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, UR Anal & Control PDE,UR 13ES64, Monastir 5019, Tunisia
[2] Univ Versailles St Quentin En Yvelines, Lab Math, F-78035 Versailles, France
关键词
ENERGY DECAY; STABILITY; SYSTEMS;
D O I
10.1007/s00205-019-01476-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the wave equation with Kelvin-Voigt damping in a bounded domain. The exponential stability result proposed by Liu and Rao (Z Angew Math Phys (ZAMP) 57:419-432, 2006) or Tebou (C R Acad Sci Paris Ser I 350: 603-608, 2012) for that system assumes that the damping is localized in a neighborhood of the whole or a part of the boundary under some consideration. In this paper we propose to deal with this geometrical condition by considering a singular Kelvin-Voigt damping which is localized far away from the boundary. In this particular case Liu and Liu (SIAM J Control Optim 36:1086-1098, 1998) proved the lack of the uniform decay of the energy. However, we show that the energy of the wave equation decreases logarithmically to zero as time goes to infinity. Our method is based on the frequency domain method. The main feature of our contribution is to write the resolvent problem as a transmission system to which we apply a specific Carleman estimate.
引用
收藏
页码:577 / 601
页数:25
相关论文
共 50 条
  • [21] Stability of the wave equations on a tree with local Kelvin-Voigt damping
    Ammari, Kais
    Liu, Zhuangyi
    Shel, Farhat
    [J]. SEMIGROUP FORUM, 2020, 100 (02) : 364 - 382
  • [22] Suspension bridge with Kelvin-Voigt damping
    Correia, Leandro
    Raposo, Carlos
    Ribeiro, Joilson
    Gutemberg, Luiz
    [J]. CONTRIBUTIONS TO MATHEMATICS, 2024, 10 : 11 - 19
  • [23] Stabilization of the wave equations with localized Kelvin-Voigt type damping under optimal geometric conditions
    Nasser, Rayan
    Noun, Nahla
    Wehbe, Ali
    [J]. COMPTES RENDUS MATHEMATIQUE, 2019, 357 (03) : 272 - 277
  • [24] Exponential stability for the wave equations with local Kelvin-Voigt damping
    Liu, Kangsheng
    Rao, Bopeng
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (03): : 419 - 432
  • [25] Stability of the wave equation with localized Kelvin-Voigt damping and dynamic Wentzell boundary conditions with delay
    Dahmani, Abdelhakim
    Khemmoudj, Ammar
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 3649 - 3673
  • [26] On the spectrum of Euler-Bernoulli beam equation with Kelvin-Voigt damping
    Zhang, Guo-Dong
    Guo, Bao-Zhu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (01) : 210 - 229
  • [27] EVENTUAL DIFFERENTIABILITY OF COUPLED WAVE EQUATIONS WITH LOCAL KELVIN-VOIGT DAMPING
    Bchatnia, Ahmed
    Souayeh, Nadia
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (06): : 1317 - 1338
  • [28] Exponential stability for the wave equations with local Kelvin-Voigt damping.
    Liu, KS
    Rao, BP
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (11) : 769 - 774
  • [29] ASYMPTOTIC BEHAVIOR OF THE TRANSMISSION EULER-BERNOULLI PLATE AND WAVE EQUATION WITH A LOCALIZED KELVIN-VOIGT DAMPING
    Hassine, Fathi
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (06): : 1757 - 1774
  • [30] Local uniform stability for the semilinear wave equation in inhomogeneous media with locally distributed Kelvin-Voigt damping
    Astudillo, M.
    Cavalcanti, M. M.
    Fukuoka, R.
    Gonzalez Martinez, V. H.
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (14-15) : 2145 - 2159