3D skeleton-based action recognition with convolutional neural networks

被引:8
|
作者
Van-Nam Hoang [2 ]
Thi-Lan Le [2 ]
Thanh-Hai Tran [2 ]
Hai-Vu [2 ]
Van-Toi Nguyen [1 ]
机构
[1] Posts & Telecommun Inst Technol, Ho Chi Minh City, Vietnam
[2] Hanoi Univ Sci & Technol, MICA Int Res Inst, Grenoble INP, CNRS,UMI2954, Hanoi, Vietnam
关键词
action recognition; 3d skeleton; CNN; LSTM;
D O I
10.1109/mapr.2019.8743545
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Activity recognition based on skeletons has drawn a lot of attention due to its wide applications in human-computer interaction, surveillance system. Compare with image data, a skeleton has a benefit of the robustness with background changing and computing efficiently dues to its low dimensional representation. With the rise of deep neural networks, a lot of works has been applied using both CNN and LSTM networks to solve this problem. In this paper, we proposed a framework for action recognition using skeleton data and evaluate it with different network architectures. We first modify the feature representation by adding motion information to a skeleton image, which gives useful information to the networks. After that, different networks architectures have been employed and evaluated to give insight into how well it will perform on this kind of data. Finally, we evaluated the system on two public datasets NTU-RGB+D and CMDFall to show the efficiency and feasibility of the system. The proposed method achieves 76.8% and 45.23% on NTU-RGB+D and CMDFall, respectively, which is competitive results.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Spatio Temporal Joint Distance Maps for Skeleton-Based Action Recognition Using Convolutional Neural Networks
    Naveenkumar, M.
    Domnic, S.
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2021, 21 (05)
  • [32] Direction-guided two-stream convolutional neural networks for skeleton-based action recognition
    Benyue Su
    Peng Zhang
    Manzhen Sun
    Min Sheng
    Soft Computing, 2023, 27 : 11833 - 11842
  • [33] Direction-guided two-stream convolutional neural networks for skeleton-based action recognition
    Su, Benyue
    Zhang, Peng
    Sun, Manzhen
    Sheng, Min
    SOFT COMPUTING, 2023, 27 (16) : 11833 - 11842
  • [34] Action Recognition Based on Features Fusion and 3D Convolutional Neural Networks
    Liu, Lulu
    Hu, Fangyu
    Zhou, Jiahui
    PROCEEDINGS OF 2016 9TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2016, : 178 - 181
  • [35] Deep Residual Temporal Convolutional Networks for Skeleton-Based Human Action Recognition
    Khamsehashari, R.
    Gadzicki, K.
    Zetzsche, C.
    COMPUTER VISION SYSTEMS (ICVS 2019), 2019, 11754 : 376 - 385
  • [36] Pose-Guided Graph Convolutional Networks for Skeleton-Based Action Recognition
    Chen, Han
    Jiang, Yifan
    Ko, Hanseok
    IEEE ACCESS, 2022, 10 : 111725 - 111731
  • [37] A comparative review of graph convolutional networks for human skeleton-based action recognition
    Liqi Feng
    Yaqin Zhao
    Wenxuan Zhao
    Jiaxi Tang
    Artificial Intelligence Review, 2022, 55 : 4275 - 4305
  • [38] Convolutional relation network for skeleton-based action recognition
    Zhu, Jiagang
    Zou, Wei
    Zhu, Zheng
    Hu, Yiming
    NEUROCOMPUTING, 2019, 370 : 109 - 117
  • [39] Dual-domain graph convolutional networks for skeleton-based action recognition
    Chen, Shuo
    Xu, Ke
    Mi, Zhongjie
    Jiang, Xinghao
    Sun, Tanfeng
    MACHINE LEARNING, 2022, 111 (07) : 2381 - 2406
  • [40] Skeleton-based action recognition by part-aware graph convolutional networks
    Qin, Yang
    Mo, Lingfei
    Li, Chenyang
    Luo, Jiayi
    VISUAL COMPUTER, 2020, 36 (03): : 621 - 631