Analysis and numerical simulation for a class of time fractional diffusion equation via tension spline

被引:10
|
作者
Kanth, A. S. V. Ravi [1 ]
Sirswal, Deepika [1 ]
机构
[1] Natl Inst Technol, Dept Math, Kurukshetra 136119, Haryana, India
关键词
Fractional diffusion equation; Tension spline; Stability; Convergence; DIFFERENCE SCHEME; SUB-DIFFUSION; TERM;
D O I
10.1007/s11075-017-0447-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solution for a class of time fractional diffusion equation via tension spline is studied. Time fractional derivative is considered in the Caputo sense. The numerical method is constructed by means of the Crank-Nicolson method and is proven to be conditionally stable. Convergence analysis is also discussed by using the Fourier series method. Numerical evidences are given to prove the efficiency of the proposed method.
引用
收藏
页码:479 / 497
页数:19
相关论文
共 50 条
  • [41] A NUMERICAL SOLUTION FOR A CLASS OF TIME FRACTIONAL DIFFUSION EQUATIONSWITH DELAY
    Pimenov, Vladimir G.
    Hendy, Ahmed S.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2017, 27 (03) : 477 - 488
  • [42] A computational approach for solving time fractional differential equation via spline functions
    Khalid, Nauman
    Abbas, Muhammad
    Iqbal, Muhammad Kashif
    Singh, Jagdev
    Ismail, Ahmad Izani Md.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3061 - 3078
  • [43] Time fractional diffusion equation for shipping water events simulation
    Gonzalez-Olvera, M. A.
    Torres, L.
    Hernandez-Fontes, J., V
    Mendoza, E.
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [44] Modeling and simulation of the fractional space-time diffusion equation
    Gomez-Aguilar, J. F.
    Miranda-Hernandez, M.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Baleanu, D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 30 (1-3) : 115 - 127
  • [45] Numerical Solution of Fractional Cable Equation via Extended Cubic B-spline
    Akram, Tayyaba
    Abbas, Muhammad
    Ismail, Ahmad Izani
    4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019), 2019, 2138
  • [46] On the spline collocation method for the single layer equation related to time-fractional diffusion
    Kemppainen, Jukka T.
    Ruotsalainen, Keijo Matti
    NUMERICAL ALGORITHMS, 2011, 57 (03) : 313 - 327
  • [47] On the spline collocation method for the single layer equation related to time-fractional diffusion
    Jukka T. Kemppainen
    Keijo Matti Ruotsalainen
    Numerical Algorithms, 2011, 57 : 313 - 327
  • [49] Correction to: Numerical solution of space fractional diffusion equation by spline method combined with Richardson extrapolation
    Z. Soori
    A. Aminataei
    Computational and Applied Mathematics, 2020, 39
  • [50] An Efficient Numerical Simulation for Time-Fractional KdV Equation
    Wang Zhuangzhuang
    Li Desheng
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS I AND II, 2009, : 471 - 475