Error analysis of the optimal quantization algorithm for obstacle problems

被引:61
|
作者
Bally, V
Pagès, G
机构
[1] Univ Maine, Lab Stat & Proc, F-72001 Le Mans, France
[2] INRIA Rocquencourt, F-78157 Le Chesnay, France
[3] Univ Paris 06, UMR 7599, Lab Probabilites & Modeles Aleatoires, F-75252 Paris, France
关键词
numerical probability; optimal stopping; snell envelope; optimal quantization of random variables; reflected backward stochastic differential equation; American option pricing;
D O I
10.1016/S0304-4149(03)00026-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the paper Bally and Pages (2000) an algorithm based on an optimal discrete quantization tree is designed to compute the solution of multi-dimensional obstacle problems for homogeneous R-d-valued Markov chains (X-k)0less than or equal tokless than or equal ton. This tree is made up with the (optimal) quantization grids of every X-k. Then a dynamic programming formula is naturally designed on it. The pricing of multi-asset American style vanilla options is a typical example of such problems. The first part of this paper is devoted to the analysis of the L-P-error induced by the quantization procedure. A second part deals with the analysis of the statistical error induced by the Monte Carlo estimation of the transition weights of the quantization tree. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 40
页数:40
相关论文
共 50 条
  • [21] Pointwise a posteriori error control for elliptic obstacle problems
    Nochetto, RH
    Siebert, KG
    Veeser, A
    NUMERISCHE MATHEMATIK, 2003, 95 (01) : 163 - 195
  • [22] A Novel Hierarchial Error Estimate for Elliptic Obstacle Problems
    Zou, Qingsong
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 54 (01) : 77 - 96
  • [23] A Novel Hierarchial Error Estimate for Elliptic Obstacle Problems
    Qingsong Zou
    Journal of Scientific Computing, 2013, 54 : 77 - 96
  • [24] Hierarchical error estimates for the energy functional in obstacle problems
    Qingsong Zou
    Andreas Veeser
    Ralf Kornhuber
    Carsten Gräser
    Numerische Mathematik, 2011, 117 : 653 - 677
  • [25] A posteriori error estimator competition for conforming obstacle problems
    Carstensen, C.
    Mendon, C.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (02) : 667 - 692
  • [26] New weak error bounds and expansions for optimal quantization
    Lemaire, Vincent
    Montes, Thibaut
    Pages, Gilles
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 371 (371)
  • [27] Optimal consensus algorithm integrated with obstacle avoidance
    Wang, Jianan
    Xin, Ming
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2013, 44 (01) : 166 - 177
  • [28] A PRIORI ERROR ESTIMATES FOR OBSTACLE OPTIMAL CONTROL PROBLEM, WHERE THE OBSTACLE IS THE CONTROL ITSELF
    Dendani, Yazid
    Ghanem, Radouen
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (04): : 717 - 740
  • [29] Finite element error analysis of affine optimal control problems
    Jork, Nicolai
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2024, 30
  • [30] ERROR ANALYSIS FOR GLOBAL MINIMA OF SEMILINEAR OPTIMAL CONTROL PROBLEMS
    Ali, Ahmad Ahmad
    Deckelnick, Klaus
    Hinze, Michael
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2018, 8 (01) : 195 - 215