Thermal effect on CFRP ablation with a 100-W class pulse fiber laser using a PCF amplifier

被引:35
|
作者
Sato, Yuji [1 ]
Tsukamoto, Masahiro [1 ]
Matsuoka, Fumihiro [2 ]
Ohkubo, Tomomasa [3 ]
Abe, Nobuyuki [1 ]
机构
[1] Osaka Univ, Joining & Welding Res Inst, 11-1 Mihogaoka, Ibaraki, Osaka 56747, Japan
[2] Osaka Univ, Grad Sch Engn, 1-1 Yamadaoka, Suita, Osaka 5650871, Japan
[3] Tokyo Univ Technol, 1401-1 Katakura Chou, Hachioji, Tokyo 1920914, Japan
关键词
Pulse fiber laser; CFRP; Heat affected zone; Raman spectroscopy; PICOSECOND LASER; IR; UV;
D O I
10.1016/j.apsusc.2017.03.286
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An experimental study on CFRP processing is presented using a high-power pulsed fiber laser operated at a 1064-nm fundamental wavelength, a 100-W average power, a 1-MHz repetition rate, and a 10-ns pulse width under ambient air, a dry air jet, or a nitrogen gas jet. Raman spectroscopy and scanning electron microscopy are conducted to measure the heat-affected zone (HAZ) quantitatively. Here, the HAZ is defined as the sum of the matrix evaporation zone (MEZ) and the resin alteration zone (RAZ). The MEZ, RAZ, and HAZ in air exceed 600, 2550, and 3150 mu m, respectively. In the case of N-2 gas jet, the MEZ, RAZ, and HAZ are 30, 88, and 118 mu m, respectively. The results show that a nitrogen gas jet most effectively suppresses the HAZ by suppressing oxidization of the carbon fiber and cooling of heat accumulation. Additionally, the cutting speed with a dry air jet or a nitrogen gas jet increases by about 10% compared to that in ambient air. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 255
页数:6
相关论文
共 50 条
  • [1] Chirped Laser Seeding for SBS Suppression in a 100-W Pulsed Erbium Fiber Amplifier
    White, Jeffrey O.
    Engin, Doruk
    Akbulut, Mehmetcan
    Rakuljic, George
    Satyan, Naresh
    Vasilyev, Arseny
    Yariv, Amnon
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2015, 51 (06)
  • [2] Photonics research: Picosecond fiber laser breaks 100-W barrier
    Hitz, Breck
    Photonics Spectra, 2006, 40 (07) : 103 - 104
  • [3] 100-W single-frequency master-oscillator fiber power amplifier
    Liem, A
    Limpert, J
    Zellmer, H
    Tünnermann, A
    OPTICS LETTERS, 2003, 28 (17) : 1537 - 1539
  • [4] 100-W average-power, high-energy nanosecond fiber amplifier
    J. Limpert
    S. Höfer
    A. Liem
    H. Zellmer
    A. Tünnermann
    S. Knoke
    H. Voelckel
    Applied Physics B, 2002, 75 : 477 - 479
  • [5] 100-W average-powerg high-energy nanosecond fiber amplifier
    Limpert, J
    Höffer, S
    Liem, A
    Zellmer, H
    Tünnermann, A
    Knoke, S
    Voelckel, H
    APPLIED PHYSICS B-LASERS AND OPTICS, 2002, 75 (4-5): : 477 - 479
  • [6] Laser-diode pumped eight-pass 100-W class Nd:YAG zig-zag slab laser amplifier
    Kato, Y
    Terada, M
    Kiriyama, H
    Yamanaka, M
    Izawa, Y
    Nakai, S
    Kanzaki, T
    Miyajima, H
    Miyamoto, M
    Kan, H
    ADVANCED HIGH-POWER LASERS, 2000, 3889 : 405 - 413
  • [7] Measurement of thermal lensing in GaAs induced by 100-W Tm:fier laser
    Bradford, Joshua
    Vodopyanov, Konstantin
    Schunemann, Peter
    Shah, Lawrence
    Richardson, Martin
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS, DEVICES, AND APPLICATIONS XIII, 2014, 8964
  • [8] 100-W High-Power Nd:YAG Picosecond Laser-Slab Amplifier
    Dong B.
    Liu L.
    Tang X.
    Liu Y.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2019, 46 (11):
  • [9] 100-W High-Power Nd:YAG Picosecond Laser-Slab Amplifier
    Dong Bin
    Liu Lei
    Tang Xiaojun
    Liu Yang
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (11):
  • [10] Efficient spectral broadening in the 100-W average power regime using gas-filled kagome HC-PCF and pulse compression
    Emaury, Florian
    Saraceno, Clara J.
    Debord, Benoit
    Ghosh, Debashri
    Diebold, Andreas
    Gerome, Frederic
    Sudmeyer, Thomas
    Benabid, Fetah
    Keller, Ursula
    OPTICS LETTERS, 2014, 39 (24) : 6843 - 6846