Research on multi-feature fusion entity relation extraction based on deep learning

被引:3
|
作者
Xu, Shiao [1 ]
Sun, Shuihua [1 ]
Zhang, Zhiyuan [1 ]
Xu, Fan [1 ]
机构
[1] Fujian Univ Technol, Sch Comp Sci & Math, Fuzhou 350118, Peoples R China
关键词
deep learning; multi-feature fusion; entity relation extraction; shortest dependency path; SDP; attention mechanism;
D O I
10.1504/IJAHUC.2022.120949
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Entity relation extraction aims to identify the semantic relation category between the target entity pairs in the original text and is one of the core technologies of tasks such as automatic document summarisation, automatic question answering system, and machine translation. Aiming at the problems in the existing relation extraction model that the local feature extraction of the text is insufficient and the semantic interaction information between the entities is easily ignored, this paper proposes a novel entity relationship extraction model. The model utilises a multi-window convolutional neural network (CNN) to capture multiple local features on the shortest dependency path (SDP) between entities, applies segmented bidirectional long short-term memory (BiLSTM) attention mechanism, extracts the global features in the original input sequence, and merges the local features with the global features to extract entity relations. The experimental results on the SemEval-2010 Task 8 dataset show that the model's entity relation extraction performance is further improved than existing methods.
引用
收藏
页码:93 / 104
页数:12
相关论文
共 50 条
  • [21] A Deep Learning Approach Based on Novel Multi-Feature Fusion for Power Load Prediction
    Xiao, Ling
    An, Ruofan
    Zhang, Xue
    PROCESSES, 2024, 12 (04)
  • [22] Deep Learning-Based Multi-Feature Fusion for Communication and Radar Signal Sensing
    Li, Ting
    Liu, Tian
    Song, Zhangli
    Zhang, Lin
    Ma, Yiming
    ELECTRONICS, 2024, 13 (10)
  • [23] Non-intrusive Load Disaggregation Based on Deep Learning and Multi-feature Fusion
    Liu, Hang
    Liu, Chunyang
    Tian, Lijun
    Zhao, Haoran
    Liu, Junwei
    2021 3RD INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS (SPIES 2021), 2021, : 210 - 215
  • [24] Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion
    Abdi, Asad
    Shamsuddin, Siti Mariyam
    Hasan, Shafaatunnur
    Piran, Jalil
    INFORMATION PROCESSING & MANAGEMENT, 2019, 56 (04) : 1245 - 1259
  • [25] Named Entity Recognition Model of Power Equipment Based on Multi-feature Fusion
    Wu, Yun
    Ma, Xiangwen
    Yang, Jieming
    Wang, Anping
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2022, 13630 : 255 - 267
  • [26] Chinese Named Entity Recognition method based on multi-feature fusion and biaffine
    Ke, Xiaohua
    Wu, Xiaobo
    Ou, Zexian
    Li, Binglong
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (05) : 6305 - 6318
  • [27] Research on Oral Test Modeling Based on Multi-Feature Fusion
    Shi, Yuliang
    Tao, Yiyue
    Lei, Jun
    ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS II, 2018, 1955
  • [28] A Research on the Fruit Recognition Algorithm Based on the Multi-Feature Fusion
    Tang, Yanfeng
    Zhang, Yawan
    Zhu, Ying
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1865 - 1869
  • [29] Research on Background Learning Correlation Filtering Algorithm With Multi-Feature Fusion
    Ren, Hongge
    Xing, Leigang
    Shi, Tao
    IEEE ACCESS, 2023, 11 : 32895 - 32906
  • [30] Multi-Feature Fusion Transformer for Chinese Named Entity Recognition
    Han, Xiaokai
    Yue, Qi
    Chu, Jing
    Han, Zhan
    Shi, Yifan
    Wang, Chengfeng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 4227 - 4232