Quantum Algorithms for the Subset-Sum Problem

被引:0
|
作者
Bernstein, Daniel J. [1 ,2 ]
Jeffery, Stacey [3 ]
Lange, Tanja [2 ]
Meurer, Alexander [4 ]
机构
[1] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
[2] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Ruhr Univ Bochum, Horst Gortz Inst IT Secur, Bochum, Germany
来源
关键词
subset sum; quantum search; quantum walks; radix trees; decoding; SVP; CVP; DISCRETE LOGARITHMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a subset-sum algorithm with heuristic asymptotic cost exponent below 0.25. The new algorithm combines the 2010 Howgrave-Graham-Joux subset-sum algorithm with a new stream-lined data structure for quantum walks on Johnson graphs.
引用
收藏
页码:16 / 33
页数:18
相关论文
共 50 条
  • [31] AN ALMOST LINEAR-TIME ALGORITHM FOR THE DENSE SUBSET-SUM PROBLEM
    GALIL, Z
    MARGALIT, O
    SIAM JOURNAL ON COMPUTING, 1991, 20 (06) : 1157 - 1189
  • [32] WORST-CASE ANALYSIS OF AN APPROXIMATION SCHEME FOR THE SUBSET-SUM PROBLEM
    FISCHETTI, M
    OPERATIONS RESEARCH LETTERS, 1986, 5 (06) : 283 - 284
  • [33] Subset-Sum Representations of Domination Polynomials
    Tomer Kotek
    James Preen
    Peter Tittmann
    Graphs and Combinatorics, 2014, 30 : 647 - 660
  • [34] A combinatorial identity of subset-sum powers in rings
    Maltby, R
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (01) : 325 - 329
  • [35] Subset-sum phase transitions and data compression
    Merhav, Neri
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [36] SUBSET-SUM PROBLEMS WITH DIFFERENT SUMMANDS - COMPUTATION
    CHAIMOVICH, M
    DISCRETE APPLIED MATHEMATICS, 1990, 27 (03) : 277 - 282
  • [37] An optimal and scalable parallelization of the two-list algorithm for the subset-sum problem
    Sanches, C. A. A.
    Soma, N. Y.
    Yanasse, H. H.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 176 (02) : 870 - 879
  • [38] A MIXTURE OF DYNAMIC-PROGRAMMING AND BRANCH-AND-BOUND FOR THE SUBSET-SUM PROBLEM
    MARTELLO, S
    TOTH, P
    MANAGEMENT SCIENCE, 1984, 30 (06) : 765 - 771
  • [39] GPU implementation of a parallel two-list algorithm for the subset-sum problem
    Wan, Lanjun
    Li, Kenli
    Liu, Jing
    Li, Keqin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (01): : 119 - 145
  • [40] Efficient CPU-GPU cooperative computing for solving the subset-sum problem
    Wan, Lanjun
    Li, Kenli
    Liu, Jing
    Li, Keqin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2016, 28 (02): : 492 - 516