Storage of polarization-entangled THz-bandwidth photons in a diamond quantum memory

被引:19
|
作者
Fisher, Kent A. G. [1 ,2 ,5 ,6 ]
England, Duncan G. [3 ]
MacLean, Jean-Philippe W. [1 ,2 ]
Bustard, Philip J. [3 ]
Heshami, Khabat [3 ]
Resch, Kevin J. [1 ,2 ]
Sussman, Benjamin J. [3 ,4 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[3] Natl Res Council Canada, 100 Sussex Dr, Ottawa, ON K1A 0R6, Canada
[4] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
[5] Univ Toronto, Dept Phys, Ctr Quantum Informat & Quantum Control, 60 St George St, Toronto, ON M5S 1A7, Canada
[6] Univ Toronto, Inst Opt Sci, 60 St George St, Toronto, ON M5S 1A7, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
ROOM-TEMPERATURE DIAMOND; STATES; TELEPORTATION; FREQUENCY; LIGHT; LASER; BEAMS;
D O I
10.1103/PhysRevA.96.012324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Bulk diamond phonons have been shown to be a versatile platform for the generation, storage, and manipulation of high-bandwidth quantum states of light. Here we demonstrate a diamond quantum memory that stores, and releases on demand, an arbitrarily polarized similar to 250 fs duration photonic qubit. The single-mode nature of the memory is overcome by mapping the two degrees of polarization of the qubit, via Raman transitions, onto two spatially distinct optical phonon modes located in the same diamond crystal. The two modes are coherently recombined upon retrieval and quantum process tomography confirms that the memory faithfully reproduces the input state with average fidelity 0.784 +/- 0.004 with a total memory efficiency of (0.76 +/- 0.03)%. In an additional demonstration, one photon of a polarization-entangled pair is stored in the memory. We report that entanglement persists in the retrieved state for up to 1.3 ps of storage time. These results demonstrate that the diamond phonon platform can be used in concert with polarization qubits, a key requirement for polarization-encoded photonic processing.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Pulsed Sagnac source of narrow-band polarization-entangled photons
    Kuzucu, Onur
    Wong, Franco N. C.
    PHYSICAL REVIEW A, 2008, 77 (03):
  • [42] Direct generation of polarization-entangled photons from warm atomic ensemble
    Park, Jiho
    Bae, Jinhyuk
    Kim, Heonoh
    Moon, Han Seb
    APPLIED PHYSICS LETTERS, 2021, 119 (07)
  • [43] Two-photon interference of polarization-entangled photons in a Franson interferometer
    Heonoh Kim
    Sang Min Lee
    Osung Kwon
    Han Seb Moon
    Scientific Reports, 7
  • [44] Two-photon interference of polarization-entangled photons in a Franson interferometer
    Kim, Heonoh
    Lee, Sang Min
    Kwon, Osung
    Moon, Han Seb
    SCIENTIFIC REPORTS, 2017, 7
  • [45] Nonclassical correlation of polarization-entangled photons in a biexciton-exciton cascade
    Das, Sumanta
    Agarwal, G. S.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2008, 41 (22)
  • [46] State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting
    Cen, Longzhu
    Zhang, Zijing
    Zhang, Jiandong
    Li, Shuo
    Sun, Yifei
    Yan, Linyu
    Zhao, Yuan
    Wang, Feng
    PHYSICAL REVIEW A, 2017, 96 (05)
  • [47] Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer
    Kim, T
    Fiorentino, M
    Wong, FNC
    PHYSICAL REVIEW A, 2006, 73 (01):
  • [48] Spectrally resolved quantum tomography of polarization-entangled states
    Kalashnikov, Dmitry A.
    Krivitsky, Leonid A.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [49] Quantum secret sharing with polarization-entangled photon pairs
    Williams, Brian P.
    Lukens, Joseph M.
    Peters, Nicholas A.
    Qi, Bing
    Gricel, Warren P.
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [50] Polarization-entangled photons from an InGaAs-based quantum dot emitting in the telecom C-band
    Olbrich, Fabian
    Hoeschele, Jonatan
    Mueller, Markus
    Kettler, Jan
    Portalupi, Simone Luca
    Paul, Matthias
    Jetter, Michael
    Michler, Peter
    APPLIED PHYSICS LETTERS, 2017, 111 (13)