A PDE method for estimation of implied volatility

被引:4
|
作者
Matic, Ivan [1 ]
Radoicic, Rados [1 ]
Stefanica, Dan [1 ]
机构
[1] CUNY, Baruch Coll, New York, NY 10021 USA
关键词
Implied volatilities; Partial differential equations; Numerical methods for option pricing; Black-Scholes model; Bachelier model; STOCHASTIC VOLATILITY; INVERSE PROBLEMS; FORMULA; DEVIATIONS;
D O I
10.1080/14697688.2019.1675898
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper it is proved that the Black-Scholes implied volatility satisfies a second order non-linear partial differential equation. The obtained PDE is then used to construct an algorithm for fast and accurate polynomial approximation for Black-Scholes implied volatility that improves on the existing numerical schemes from literature, both in speed and parallelizability. We also show that the method is applicable to other problems, such as approximation of implied Bachelier volatility.
引用
收藏
页码:393 / 408
页数:16
相关论文
共 50 条
  • [21] Intraday volatility forecasting from implied volatility
    Byun, Suk Joon
    Rhee, Dong Woo
    Kim, Sol
    [J]. INTERNATIONAL JOURNAL OF MANAGERIAL FINANCE, 2011, 7 (01) : 83 - +
  • [22] ASYMPTOTICS OF IMPLIED VOLATILITY IN LOCAL VOLATILITY MODELS
    Gatheral, Jim
    Hsu, Elton P.
    Laurence, Peter
    Ouyang, Cheng
    Wang, Tai-Ho
    [J]. MATHEMATICAL FINANCE, 2012, 22 (04) : 591 - 620
  • [23] Computing the implied volatility in stochastic volatility models
    Berestycki, H
    Busca, J
    Florent, I
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) : 1352 - 1373
  • [24] Asymptotics of Forward Implied Volatility
    Jacquier, Antoine
    Roome, Patrick
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2015, 6 (01): : 307 - 351
  • [25] Maturity cycles in implied volatility
    Fouque, JP
    Papanicolaou, G
    Sircar, R
    Solna, K
    [J]. FINANCE AND STOCHASTICS, 2004, 8 (04) : 451 - 477
  • [26] A note on computation of implied volatility
    Kagenishi Y.
    Shinohara Y.
    [J]. Asia-Pacific Financial Markets, 2001, 8 (4) : 361 - 368
  • [27] Implied volatility in oil markets
    Borovkova, Svetlana
    Permana, Ferry J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (06) : 2022 - 2039
  • [28] Implied volatility and skewness surface
    Bruno Feunou
    Jean-Sébastien Fontaine
    Roméo Tédongap
    [J]. Review of Derivatives Research, 2017, 20 : 167 - 202
  • [29] The implied volatility of a sports game
    Poison, Nicholas G.
    Stern, Hal S.
    [J]. JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS, 2015, 11 (03) : 145 - 153
  • [30] Implied volatility and skewness surface
    Feunou, Bruno
    Fontaine, Jean-Sebastien
    Tedongap, Romeo
    [J]. REVIEW OF DERIVATIVES RESEARCH, 2017, 20 (02) : 167 - 202