A note on critical point metrics of the total scalar curvature functional

被引:23
|
作者
Neto, Benedito Leandro [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Total scalar curvature functional; Critical point equation; Einstein metric; EQUATION;
D O I
10.1016/j.jmaa.2014.11.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this note is to investigate the critical points of the total scalar curvature functional restricted to the space of metrics with constant scalar curvature of unitary volume, for simplicity CPE metrics. In this note, we give a necessary and sufficient condition on the norm of the gradient of the potential function for a CPE metric to be Einstein. (C) 2014 Published by Elsevier Inc.
引用
收藏
页码:1544 / 1548
页数:5
相关论文
共 50 条
  • [41] THE SPACE OF NEGATIVE SCALAR CURVATURE METRICS
    LOHKAMP, J
    INVENTIONES MATHEMATICAE, 1992, 110 (02) : 403 - 407
  • [42] ON SQUARE METRICS OF SCALAR FLAG CURVATURE
    Shen, Zhongmin
    Yang, Guojun
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 224 (01) : 159 - 188
  • [43] ON THE SCALAR CURVATURE OF KROPINA METRICS I
    Zhu, Hongmei
    Song, Lumin
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (03): : 579 - 602
  • [44] On Square metrics of scalar flag curvature
    Zhongmin Shen
    Guojun Yang
    Israel Journal of Mathematics, 2018, 224 : 159 - 188
  • [45] A survey on positive scalar curvature metrics
    Carlotto, Alessandro
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (01): : 17 - 42
  • [46] A survey on positive scalar curvature metrics
    Alessandro Carlotto
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 17 - 42
  • [47] On Kropina metrics of scalar flag curvature
    Xia, Qiaoling
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (03) : 393 - 404
  • [48] THE SPACE OF METRICS OF POSITIVE SCALAR CURVATURE
    Hanke, Bernhard
    Schick, Thomas
    Steimle, Wolfgang
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2014, (120): : 335 - 367
  • [49] The space of metrics of positive scalar curvature
    Bernhard Hanke
    Thomas Schick
    Wolfgang Steimle
    Publications mathématiques de l'IHÉS, 2014, 120 : 335 - 367