The Niblack-Nigam iterative method revisited

被引:0
|
作者
Killingbeck, J. P. [1 ,2 ]
Jolicard, G. [2 ]
机构
[1] Univ Hull, Ctr Math, Kingston Upon Hull HU6 7RX, N Humberside, England
[2] CNRS, Inst UTINAM, UMR 6213, F-25010 Besancon, France
关键词
Quantum physics; Matrix eigenvalues; Resonances;
D O I
10.1007/s10910-009-9615-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The iterative algorithm of Niblack and Nigam for matrix eigenvalues is derived in a simple manner and is improved so as to permit reliable numerical calculations. The computational capabilities of the algorithm are tested on a bound state problem and it is then shown how to extract eigenvector information from numerical eigenvalues. A complexified form of the algorithm is shown to permit the accurate calculation of complex resonant state energies.
引用
收藏
页码:929 / 936
页数:8
相关论文
共 50 条
  • [1] The Niblack–Nigam iterative method revisited
    J. P. Killingbeck
    G. Jolicard
    [J]. Journal of Mathematical Chemistry, 2010, 47 : 929 - 936
  • [2] Application of Niblack's Method on Images
    Farid, S.
    Ahmed, F.
    [J]. ICET: 2009 INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2009, : 280 - 286
  • [3] An Improved Vein Image Segmentation Algorithm Based on SLIC and Niblack Threshold Method
    Zhou, Muqing
    Wu, Zhaoguo
    Chen, Difan
    Zhou, Ya
    [J]. 2013 INTERNATIONAL CONFERENCE ON OPTICAL INSTRUMENTS AND TECHNOLOGY: OPTOELECTRONIC IMAGING AND PROCESSING TECHNOLOGY, 2013, 9045
  • [4] Niblack’s binarization method and its modifications to real-time applications: a review
    Lalit Prakash Saxena
    [J]. Artificial Intelligence Review, 2019, 51 : 673 - 705
  • [5] Niblack's binarization method and its modifications to real-time applications: a review
    Saxena, Lalit Prakash
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2019, 51 (04) : 673 - 705
  • [6] Ontology engineering revisited: An iterative case study
    Tempich, Christoph
    Pinto, H. Sofia
    Staab, Steffen
    [J]. SEMANTIC WEB: RESEARCH AND APPLICATIONS, PROCEEDINGS, 2006, 4011 : 110 - 124
  • [7] Finitely convergent iterative methods with overrelaxations revisited
    Victor I. Kolobov
    Simeon Reich
    Rafal Zalas
    [J]. Journal of Fixed Point Theory and Applications, 2021, 23
  • [8] Lipschitzian solutions to linear iterative equations revisited
    Baron, Karol
    Morawiec, Janusz
    [J]. AEQUATIONES MATHEMATICAE, 2017, 91 (01) : 161 - 167
  • [9] Finitely convergent iterative methods with overrelaxations revisited
    Kolobov, Victor I.
    Reich, Simeon
    Zalas, Rafal
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (04)
  • [10] Lipschitzian solutions to linear iterative equations revisited
    Karol Baron
    Janusz Morawiec
    [J]. Aequationes mathematicae, 2017, 91 : 161 - 167