Finitely convergent iterative methods with overrelaxations revisited

被引:4
|
作者
Kolobov, Victor I. [1 ]
Reich, Simeon [2 ]
Zalas, Rafal [2 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Convex feasibility problem; Cutter; Finite convergence; Metric projection; CONVEX FEASIBILITY PROBLEMS; DOUGLAS-RACHFORD ALGORITHM; OPERATORS; WEAK;
D O I
10.1007/s11784-021-00888-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the finite convergence of iterative methods for solving convex feasibility problems. Our key assumptions are that the interior of the solution set is nonempty and that certain overrelaxation parameters converge to zero, but with a rate slower than any geometric sequence. Unlike other works in this area, which require divergent series of overrelaxations, our approach allows us to consider some summable series. By employing quasi-Fejerian analysis in the latter case, we obtain additional asymptotic convergence guarantees, even when the interior of the solution set is empty.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Finitely convergent iterative methods with overrelaxations revisited
    Victor I. Kolobov
    Simeon Reich
    Rafal Zalas
    [J]. Journal of Fixed Point Theory and Applications, 2021, 23
  • [2] Finitely convergent deterministic and stochastic iterative methods for solving convex feasibility problems
    Kolobov, Victor I.
    Reich, Simeon
    Zalas, Rafal
    [J]. MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 1163 - 1183
  • [3] Finitely convergent deterministic and stochastic iterative methods for solving convex feasibility problems
    Victor I. Kolobov
    Simeon Reich
    Rafał Zalas
    [J]. Mathematical Programming, 2022, 194 : 1163 - 1183
  • [4] CONVERGENT ITERATIVE METHODS FOR THE HARTREE EIGENPROBLEM
    AUCHMUTY, G
    JIA, WY
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1994, 28 (05): : 575 - 610
  • [5] A class of quadratically convergent iterative methods
    Predrag S. Stanimirović
    Vasilios N. Katsikis
    Shwetabh Srivastava
    Dimitrios Pappas
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3125 - 3146
  • [6] A class of quadratically convergent iterative methods
    Stanimirovic, Predrag S.
    Katsikis, Vasilios N.
    Srivastava, Shwetabh
    Pappas, Dimitrios
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3125 - 3146
  • [7] Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations
    Blanca Ayuso de Dios
    Ludmil Zikatanov
    [J]. Journal of Scientific Computing, 2009, 40 : 4 - 36
  • [8] RAPIDLY CONVERGENT ITERATIVE METHODS FOR NUMERICAL TRANSPORT PROBLEMS
    LARSEN, EW
    [J]. TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1983, 45 : 317 - 318
  • [9] NEW STRONGLY CONVERGENT ITERATIVE METHODS FOR NONEXPANSIVE MAPPINGS
    Zhan, Wanrong
    Yu, Hai
    Wang, Fenghui
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2024, 2024
  • [10] Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations
    Ayuso de Dios, Blanca
    Zikatanov, Ludmil
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) : 4 - 36