On the set of divisors of Gaussian integers

被引:0
|
作者
Maier, Helmut [1 ]
Singh, Saurabh Kumar [1 ,2 ]
机构
[1] Univ Ulm, Inst Number Theory & Probabil Theory, D-89069 Ulm, Germany
[2] Indian Stat Inst, Stat Math Unit, 203 BT Rd, Kolkata 700108, India
来源
RAMANUJAN JOURNAL | 2019年 / 50卷 / 02期
关键词
Gaussian integers; Divisor function; Erdos conjecture on divisor function;
D O I
10.1007/s11139-019-00158-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Maier and Tenenbaum (Invent Math 76(1):121-128, 1984), Tenenbaum and the first author proved an old conjecture of Paul Erdos about the propinquity of divisors of integers. In this paper, we prove an analogous results for Gaussian integers.
引用
下载
收藏
页码:355 / 366
页数:12
相关论文
共 50 条
  • [31] ON DIVISORS OF SUMS OF INTEGERS .4.
    SARKOZY, A
    STEWART, CL
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1988, 40 (04): : 788 - 816
  • [32] SUMS OF IMAGINARY POWERS OF DIVISORS OF INTEGERS
    HALL, RR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 9 (36): : 571 - 580
  • [33] The distribution law of divisors on a sequence of integers
    Daoud, Mohamed Saber
    Hidri, Afef
    Naimi, Mongi
    LITHUANIAN MATHEMATICAL JOURNAL, 2015, 55 (04) : 474 - 488
  • [34] On consecutive integers divisible by the number of their divisors
    Andreescu, Titu
    Luca, Florian
    Phaovibul, M. Tip
    ACTA ARITHMETICA, 2016, 173 (03) : 269 - 281
  • [35] Integers with dense divisors (Part 2)
    Saias, E
    JOURNAL OF NUMBER THEORY, 2001, 86 (01) : 39 - 49
  • [36] Distribution laws of the divisors of friable integers
    Drappeau, Sary
    Tenenbaum, Gerald
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) : 1299 - 1326
  • [37] Gaussian Integers
    Futa, Yuichi
    Okazaki, Hiroyuki
    Mizushima, Daichi
    Shidama, Yasunari
    FORMALIZED MATHEMATICS, 2013, 21 (02): : 115 - 125
  • [38] The number of prime factors of integers with dense divisors
    Weingartner, Andreas
    JOURNAL OF NUMBER THEORY, 2022, 239 : 57 - 77
  • [39] TITCHMARSCH DIVISORS OF INTEGERS WITH NO LARGE PRIME FACTOR
    FOUVRY, E
    TENENBAUM, G
    LECTURE NOTES IN MATHEMATICS, 1990, 1434 : 86 - 102
  • [40] NUMBER OF LARGE PRIME DIVISORS OF CONSECUTIVE INTEGERS
    GALAMBOS, J
    JOURNAL OF NUMBER THEORY, 1977, 9 (03) : 338 - 341