Massive gravity from Dirichlet boundary conditions

被引:63
|
作者
de Rham, Claudia [1 ,2 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Massive gravity; Degravitation; Extra dimensions;
D O I
10.1016/j.physletb.2010.04.005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose an explicit non-linear realization of massive gravity, which relies on the introduction of a spurious compact extra dimension, on which we impose half-Newmann and half-Dirichlet boundary conditions. At the linearized level, we recover the expected gravitational exchange amplitude between two sources mediated by a massive Fierz-Pauli spin-2 field, while cubic interactions in the additional helicity-0 mode give rise to the expected Vainshtein mechanism. We also show that this framework can accommodate for a flat four-dimensional geometry in the presence of a cosmological constant, putting this framework on a good footing for the study of degravitation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:137 / 141
页数:5
相关论文
共 50 条
  • [21] ABSORPTION SEMIGROUPS AND DIRICHLET BOUNDARY-CONDITIONS
    ARENDT, W
    BATTY, CJK
    MATHEMATISCHE ANNALEN, 1993, 295 (03) : 427 - 448
  • [22] Stabilizing Effect of Diffusion and Dirichlet Boundary Conditions
    Budac, Ondrej
    Fila, Marek
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2010, 17 (03): : 303 - 312
  • [23] On the convergence of the Willmore flow with Dirichlet boundary conditions
    Schlierf, Manuel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 241
  • [24] Classical solutions for SPDEs with dirichlet boundary conditions
    Bonaccorsi, S
    Guatteri, G
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS III, 2002, 52 : 33 - 44
  • [25] On a nonlinear problem with Dirichlet and Acoustic boundary conditions
    Alcântara, Adriano A.
    Carmo, Bruno A.
    Clark, Haroldo R.
    Guardia, Ronald R.
    Rincon, Mauro A.
    Applied Mathematics and Computation, 2021, 411
  • [26] On the torsion function with Robin or Dirichlet boundary conditions
    van den Berg, M.
    Bucur, D.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (03) : 1647 - 1666
  • [27] Dirichlet and Neumann boundary conditions: What is in between?
    Arendt, W
    Warma, M
    JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (01) : 119 - 135
  • [28] The heat equation with inhomogeneous Dirichlet boundary conditions
    van den Berg, M
    Gilkey, PB
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1999, 7 (02) : 279 - 294
  • [29] Waveguides with Combined Dirichlet and Robin Boundary Conditions
    P. Freitas
    D. Krejčiřík
    Mathematical Physics, Analysis and Geometry, 2006, 9 : 335 - 352