Automatic synthesis of quantum circuits for point addition on ordinary binary elliptic curves

被引:4
|
作者
Budhathoki, Parshuram [1 ]
Steinwandt, Rainer [2 ]
机构
[1] Salt Lake Community Coll, Salt Lake City, UT 84123 USA
[2] Florida Atlantic Univ, Boca Raton, FL 33431 USA
关键词
Quantum circuit; Shor's algorithm; Discrete logarithm problem; DISCRETE LOGARITHMS; ALGORITHM; DEPTH;
D O I
10.1007/s11128-014-0851-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When designing quantum circuits for Shor's algorithm to solve the discrete logarithm problem, implementing the group arithmetic is a cost-critical task. We introduce a software tool for the automatic generation of addition circuits for ordinary binary elliptic curves, a prominent platform group for digital signatures. The resulting circuits reduce the number of T-gates by a factor 13/5 compared to the best previous construction, without increasing the number of qubits or T-depth. The software also optimizes the (CNOT) depth for F-2-linear operations by means of suitable graph colorings.
引用
收藏
页码:201 / 216
页数:16
相关论文
共 37 条
  • [21] Automatic synthesis of composable sequential quantum Boolean circuits
    Chang, LK
    Cheng, FC
    2005 IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN: VLSI IN COMPUTERS & PROCESSORS, PROCEEDINGS, 2005, : 289 - 294
  • [22] Automatic synthesis for quantum circuits using genetic algorithms
    Ruican, Cristian
    Udrescu, Mihai
    Prodan, Lucian
    Vladutiu, Mircea
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 174 - +
  • [23] A new side channel resistant scalar point multiplication method for binary elliptic curves
    Cohen, Aaron E.
    Parhi, Keshab K.
    2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, : 1205 - +
  • [24] A New Double Point Multiplication Algorithm and Its Application to Binary Elliptic Curves with Endomorphisms
    Azarderakhsh, Reza
    Karabina, Koray
    IEEE TRANSACTIONS ON COMPUTERS, 2014, 63 (10) : 2614 - 2619
  • [25] Efficient Lightweight Hardware Structures of Point Multiplication on Binary Edwards Curves for Elliptic Curve Cryptosystems
    Rashidi, Bahram
    Abedini, Mohammad
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2019, 28 (09)
  • [27] EFFICIENT QUANTUM CIRCUITS FOR BINARY ELLIPTIC CURVE ARITHMETIC: REDUCING T-GATE COMPLEXITY
    Amento, Brittanney
    Roetteler, Martin
    Steinwandt, Rainer
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (7-8) : 631 - 644
  • [28] Analyzing the Galbraith-Lin-Scott Point Multiplication Method for Elliptic Curves over Binary Fields
    Hankerson, Darrel
    Karabina, Koray
    Menezes, Alfred
    IEEE TRANSACTIONS ON COMPUTERS, 2009, 58 (10) : 1411 - 1420
  • [29] New space-efficient quantum algorithm for binary elliptic curves using the optimized division algorithm
    Kim, Hyeonhak
    Hong, Seokhie
    QUANTUM INFORMATION PROCESSING, 2023, 22 (06)
  • [30] New space-efficient quantum algorithm for binary elliptic curves using the optimized division algorithm
    Hyeonhak Kim
    Seokhie Hong
    Quantum Information Processing, 22