Assessing Illumina technology for the high-throughput sequencing of bacteriophage genomes

被引:27
|
作者
Rihtman, Branko [1 ]
Meaden, Sean [2 ]
Clokie, Martha R. J. [3 ]
Koskella, Britt [2 ,4 ]
Millard, Andrew D. [5 ]
机构
[1] Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England
[2] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4QJ, Devon, England
[3] Univ Leicester, Dept Infect Immun & Inflammat, Leicester LE1 7RH, Leics, England
[4] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA
[5] Univ Warwick, Warwick Med Sch, Coventry CV4 7AL, W Midlands, England
来源
PEERJ | 2016年 / 4卷
关键词
Bacteriophage; Genome; Assembly; Sequencing; Illumina; MARINE SYNECHOCOCCUS STRAINS; COMPLETE NUCLEOTIDE-SEQUENCE; VIRAL METAGENOMICS; PHOTOSYNTHESIS GENES; INFLUENZAE RD; DNA; VIRUSES; GENERATION; RESISTANCE; DIVERSITY;
D O I
10.7717/peerj.2055
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bacteriophages are the most abundant biological entities on the planet, playing crucial roles in the shaping of bacterial populations. Phages have smaller genomes than their bacterial hosts, yet there are currently fewer fully sequenced phage than bacterial genomes. We assessed the suitability of Illumina technology for high-throughput sequencing and subsequent assembly of phage genomes. In silico datasets reveal that 30x coverage is sufficient to correctly assemble the complete genome of similar to 98.5% of known phages, with experimental data confirming that the majority of phage genomes can be assembled at 30x coverage. Furthermore, in silico data demonstrate it is possible to co-sequence multiple phages from different hosts, without introducing assembly errors.
引用
下载
收藏
页数:21
相关论文
共 50 条
  • [41] Haplotyping germline and cancer genomes with high-throughput linked-read sequencing
    Zheng, Grace X. Y.
    Lau, Billy T.
    Schnall-Levin, Michael
    Jarosz, Mirna
    Bell, John M.
    Hindson, Christopher M.
    Kyriazopoulou-Panagiotopoulou, Sofia
    Masquelier, Donald A.
    Merrill, Landon
    Terry, Jessica M.
    Mudivarti, Patrice A.
    Wyatt, Paul W.
    Bharadwaj, Rajiv
    Makarewicz, Anthony J.
    Li, Yuan
    Belgrader, Phillip
    Price, Andrew D.
    Lowe, Adam J.
    Marks, Patrick
    Vurens, Gerard M.
    Hardenbol, Paul
    Montesclaros, Luz
    Luo, Melissa
    Greenfield, Lawrence
    Wong, Alexander
    Birch, David E.
    Short, Steven W.
    Bjornson, Keith P.
    Patel, Pranav
    Hopmans, Erik S.
    Wood, Christina
    Kaur, Sukhvinder
    Lockwood, Glenn K.
    Stafford, David
    Delaney, Joshua P.
    Wu, Indira
    Ordonez, Heather S.
    Grimes, Susan M.
    Greer, Stephanie
    Lee, Josephine Y.
    Belhocine, Kamila
    Giorda, Kristina M.
    Heaton, William H.
    McDermott, Geoffrey P.
    Bent, Zachary W.
    Meschi, Francesca
    Kondov, Nikola O.
    Wilson, Ryan
    Bernate, Jorge A.
    Gauby, Shawn
    NATURE BIOTECHNOLOGY, 2016, 34 (03) : 303 - +
  • [42] LysoPhD: predicting functional prophages in bacterial genomes from high-throughput sequencing
    Niu, Qi
    Peng, Shao-liang
    Zhang, Xiang-li-lan
    Li, Shuai-cheng
    Xu, Ying
    Xie, Xiang-cheng
    Tong, Yi-Gang
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 288 - 292
  • [43] spplDer: A Species Identification Tool to Investigate Hybrid Genomes with High-Throughput Sequencing
    Langdon, Quinn K.
    Peris, David
    Kyle, Brian
    Hittinger, Chris Todd
    MOLECULAR BIOLOGY AND EVOLUTION, 2018, 35 (11) : 2835 - 2849
  • [44] Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics
    Timmermans, M. J. T. N.
    Dodsworth, S.
    Culverwell, C. L.
    Bocak, L.
    Ahrens, D.
    Littlewood, D. T. J.
    Pons, J.
    Vogler, A. P.
    NUCLEIC ACIDS RESEARCH, 2010, 38 (21) : e197
  • [45] Application of High-Throughput Sequencing Technology in Identifying the Pathogens in Endophthalmitis
    Cheng, Peini
    Dong, Kui
    Kang, Zhiming
    Li, Jing
    Wang, Wenjuan
    Zhang, Xiaodan
    Zhou, Guohong
    JOURNAL OF OPHTHALMOLOGY, 2022, 2022
  • [46] Implementation of High-Throughput Sequencing (HTS) in Aptamer Selection Technology
    Komarova, Natalia
    Barkova, Dania
    Kuznetsov, Alexander
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (22) : 1 - 22
  • [47] Analysis of microbial Diversity in Soy Sauce fermented grains by Illumina High-throughput sequencing technique
    Liu, Yongbi
    Lin, Qiao
    Yan, Dongmei
    Cai, Li
    2019 5TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2020, 440
  • [48] Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems
    Minoche, Andre E.
    Dohm, Juliane C.
    Himmelbauer, Heinz
    GENOME BIOLOGY, 2011, 12 (11):
  • [49] Identification of microRNAs in the Toxigenic Dinoflagellate Alexandrium catenella by High-Throughput Illumina Sequencing and Bioinformatic Analysis
    Geng, Huili
    Sui, Zhenghong
    Zhang, Shu
    Du, Qingwei
    Ren, Yuanyuan
    Liu, Yuan
    Kong, Fanna
    Zhong, Jie
    Ma, Qingxia
    PLOS ONE, 2015, 10 (09):
  • [50] De novo assembly and analysis of the Heortia vitessoides transcriptome via high-throughput Illumina sequencing
    Cheng, Jie
    Chen, Jingxiang
    Lin, Tong
    JOURNAL OF ASIA-PACIFIC ENTOMOLOGY, 2017, 20 (04) : 1241 - 1248