Cascading effects of fire retardant on plant-microbe interactions, community composition, and invasion

被引:9
|
作者
Marshall, Abigail [1 ]
Waller, Lauren [1 ,2 ]
Lekberg, Ylva [1 ,3 ]
机构
[1] MPG Ranch, 1001 S Higgins Ave,Suite A3, Missoula, MT 59801 USA
[2] Univ Montana, Div Biol Sci, 32 Campus Dr HS 104, Missoula, MT 59812 USA
[3] Univ Montana, Coll Forestry & Conservat, Dept Ecosyst & Conservat Sci, 32 Campus Dr, Missoula, MT 59812 USA
关键词
arbuscular mycorrhizal fungi; exotic annuals; long-term fire retardant; nitrogen; phosphorus; plant community composition; plant invasion; plant productivity; MYCORRHIZAE; RESOURCES; DIVERSITY; RESPONSES; ABILITY;
D O I
10.1890/16-0001.1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Climate change, historical fire suppression, and a rise in human movements in urban-forest boundaries have resulted in an increased use of long-term fire retardant (LTFR). While LTFR is an effective fire-fighting tool, it contains high concentrations of nitrogen and phosphorus, and little is known about how this nutrient pulse affects terrestrial ecosystems. We used field surveys and greenhouse experiments to quantify effects of LTFR on plant productivity, community composition, and plant interactions with the ubiquitous root symbiont arbuscular mycorrhizal fungi (AMF). In the field, LTFR applications were associated with persistent shifts in plant communities toward exotic annuals with little or no dependency of AMF. Plants exposed to LTFR were less colonized by AMF, both in field surveys and in the greenhouse, and this was most likely due to the substantial and persistent increase in soil available phosphorus. All plants grew bigger with LTFR in the greenhouse, but the invasive annual cheatgrass (Bromus tectorum) benefitted most. While LTFR can control fires, it may cause long-term changes in soil nutrient availabilities, disrupt plant interactions with beneficial soil microbes, and exasperate invasion by some exotic plants.
引用
收藏
页码:996 / 1002
页数:7
相关论文
共 50 条
  • [21] The role of water in plant-microbe interactions
    Aung, Kyaw
    Jiang, Yanjuan
    He, Sheng Yang
    PLANT JOURNAL, 2018, 93 (04): : 771 - 780
  • [22] Interkingdom signaling in plant-microbe interactions
    Jinhong Kan
    Rongxiang Fang
    Yantao Jia
    Science China Life Sciences, 2017, 60 : 785 - 796
  • [23] Editorial: Biotrophic Plant-Microbe Interactions
    Spanu, Pietro D.
    Panstruga, Ralph
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [24] Interkingdom signaling in plant-microbe interactions
    Kan, Jinhong
    Fang, Rongxiang
    Jia, Yantao
    SCIENCE CHINA-LIFE SCIENCES, 2017, 60 (08) : 785 - 796
  • [25] Jasmonates - Signals in plant-microbe interactions
    Pozo, MJ
    Van Loon, LC
    Pieterse, CMJ
    JOURNAL OF PLANT GROWTH REGULATION, 2004, 23 (03) : 211 - 222
  • [26] New Horizons in Plant-Microbe Interactions
    Cerny, Martin
    Hyskova, Veronika
    PLANTS-BASEL, 2024, 13 (21):
  • [27] Biotechnology and biodiversity of plant-microbe interactions
    Werner, D
    Neumann-Silkow, F
    Prasad, BN
    Steele, H
    Redecker, D
    Vinuesa, R
    Müller, P
    BIOTECHNOLOGY IN SUSTAINABLE BIODIVERSITY AND FOOD SECURITY, 2003, : 17 - 29
  • [28] Jasmonates—Signals in plant-microbe interactions
    Pozo M.J.
    Van Loon L.C.
    Pieterse C.M.J.
    Journal of Plant Growth Regulation, 2004, 23 (3) : 211 - 222
  • [29] The Age of Coumarins in Plant-Microbe Interactions
    Stringlis, Ioannis A.
    de Jonge, Ronnie
    Pieterse, Corne M. J.
    PLANT AND CELL PHYSIOLOGY, 2019, 60 (07) : 1405 - 1419
  • [30] Jasmonates - Signals in plant-microbe interactions
    Pozo M.J.
    Van Loon L.C.
    Pieterse C.M.J.
    Journal of Plant Growth Regulation, 2004, 23 (3) : 211 - 222