Star complements and exceptional graphs

被引:4
|
作者
Cvetkovic, D.
Rowlinson, P. [1 ]
Simic, S. K.
机构
[1] Univ Stirling, Dept Comp Sci & Engn, Stirling FK9 4LA, Scotland
[2] Univ Belgrade, Fac Elect Engn, Dept Math, Belgrade 11120, Serbia
[3] SANU, Inst Math, Belgrade 11001, Serbia
基金
英国工程与自然科学研究理事会;
关键词
graph; eigenvalue; star complement;
D O I
10.1016/j.laa.2007.01.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite graph of order n with an eigenvalue mu of multiplicity k. (Thus the mu-eigenspace of a (0, 1)-adjacency matrix of G has dimension k.) A star complement for mu in G is an induced subgraph G - X of G such that vertical bar X vertical bar = k and G - X does not have it as an eigenvalue. An exceptional graph is a connected graph, other than a generalized line graph, whose eigenvalues lie in [-2, infinity). We establish some properties of star complements, and of eigenvectors, of exceptional graphs with least eigenvalue -2. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 154
页数:9
相关论文
共 50 条
  • [41] On regular graphs equienergetic with their complements
    Podesta, Ricardo A.
    Videla, Denis E.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (03): : 422 - 456
  • [42] Kneser Graphs and their Complements are Hyperenergetic
    Akbari, S.
    Moazami, F.
    Zare, S.
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2009, 61 (02) : 361 - 368
  • [43] Complements of nearly perfect graphs
    Gyarfas, Andras
    Li, Zhentao
    Machado, Raphael
    Sebo, Andras
    Thomasse, Stephan
    Trotignon, Nicolas
    [J]. JOURNAL OF COMBINATORICS, 2013, 4 (03) : 299 - 310
  • [44] Laplacian Borderenergetic Graphs and Their Complements
    Lv, Xiaoyun
    Deng, Bo
    Li, Xueliang
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 86 (03) : 587 - 596
  • [45] Hamiltonicity of complements of middle graphs
    An, Xinhui
    Wu, Baoyindureng
    [J]. DISCRETE MATHEMATICS, 2007, 307 (9-10) : 1178 - 1184
  • [46] Domination in Bipartite Graphs and in Their Complements
    Bohdan Zelinka
    [J]. Czechoslovak Mathematical Journal, 2003, 53 : 241 - 247
  • [47] Bipartite complements of circle graphs
    Esperet, Louis
    Stehlik, Matej
    [J]. DISCRETE MATHEMATICS, 2020, 343 (06)
  • [48] Graph complements of circular graphs
    [J]. Knill, Oliver, 2021, arXiv
  • [49] On metric dimension of graphs and their complements
    [J]. Eroh, L. (eroh@uwosh.edu), 1600, Charles Babbage Research Centre (83):
  • [50] Domination in bipartite graphs and in their complements
    Zelinka, B
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2003, 53 (02) : 241 - 247